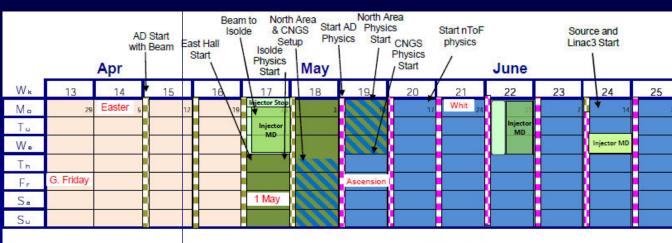
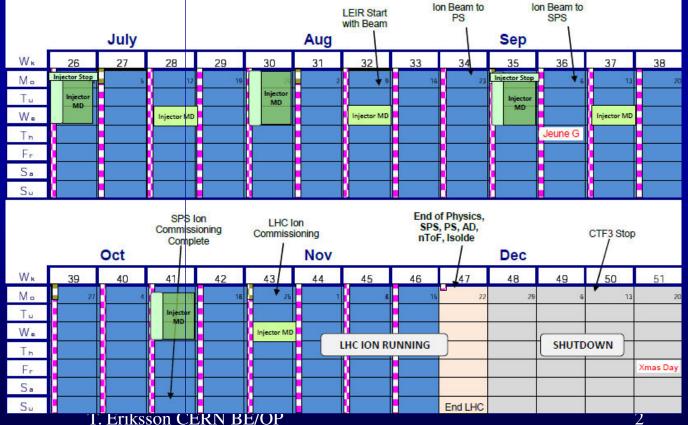


AD Outlook for 2010

IEFC 11/2/2010

T. Eriksson CERN BE/OP


1



Key dates for 2010 run:

•22/3 start of HW-tests
•12/4 start s-u with beam
•10/5 Start of physics

=> •28 weeks of physics scheduled (4600 h)

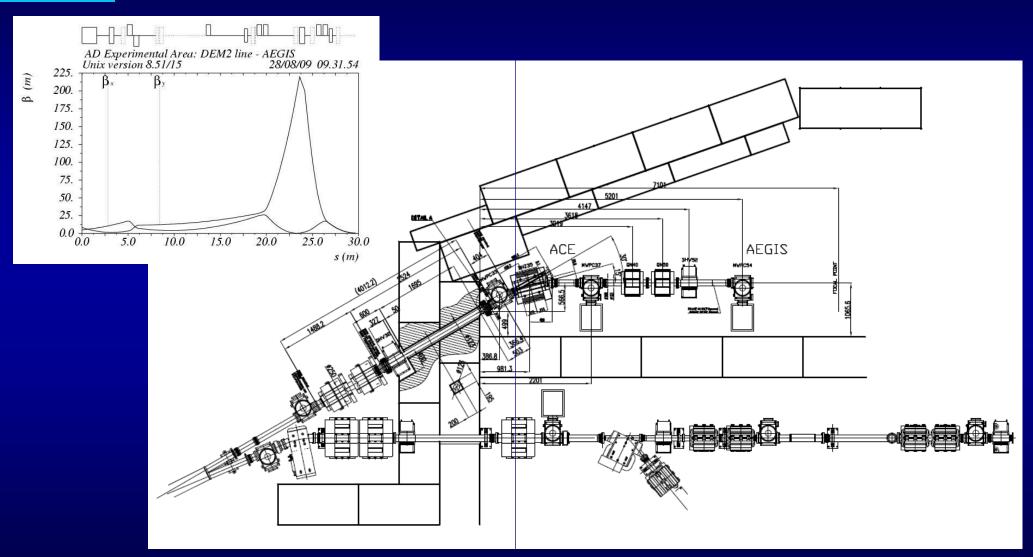
IEFC 11/2/2010

•Experimental requirements for 2010: •ACE:

- •2-3 * 24h periods mid-June
- •1 week 24h/24 in October
- Single bunch ejection at 500 MeV/c (no e-cooling)
 ALPHA, ATRAP: Single bunch ejection at 100 MeV/c
 ASACUSA: Single and 6:ple ejection at 100 MeV/c
 3*8 h shifts
- •AEGIS: No beam required in 2010

AEGIS (AD-6)

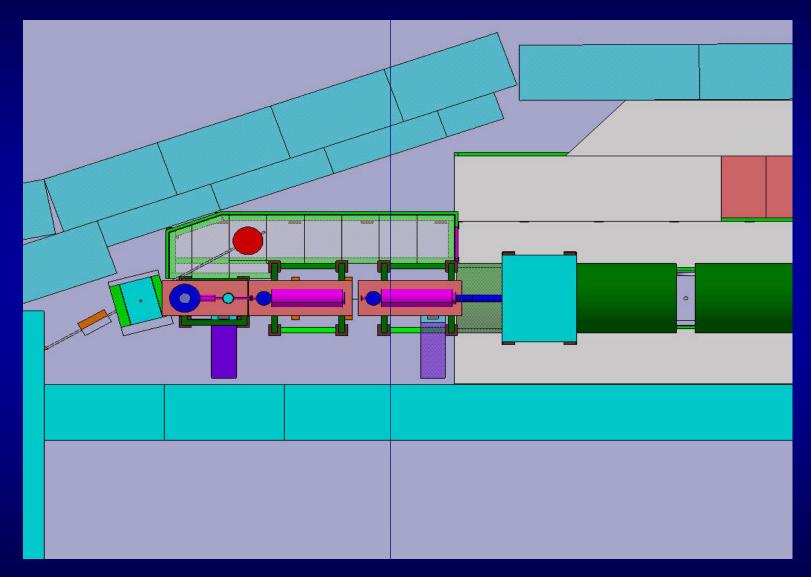
- Gravitational studies of Hbars produced in flight
 Sharing of the DEM-zone with ACE (cell irradiation)
 Fully approved in 2009
 Installation and commissioning in 2010
 First Pbar beams in 2011
 - => one more user to share the available Pbars



AEGIS schedule

2009	2010	2011	2012	201	3	2014	2015	2016	milestone
	uction of the three ts (5 T, 1T, 0.15 T)								commissioning of the magnets
		ommis- oning	e+ studies	e+ studies		e+ studies	e+ studies	e+ studies	commissioning of the accumulator
	struction and assembly he traps and controls								
	refurbishing of central de incl. positronium detectio								source and in-situ cosmics/pbar/e+ tests
		mbly and commissioning e-, e+ and antiprotons							particle trapping and manipulations
		antiproton trapping							detector test with slow antiprotons
	ron excitation lasers: construc missioning and installation	tion,							laser wavelengths and power
		positroni productio							Positronium and first Rydberg positronium [*]
		ommissioning and optim of the dilution refrigerato							refrigerator reaches 0.05 K [*]
		further lasers: installation & c	omm.						
			antihydrogen and beam						Antihydrogen temp.* & first Antihydrogen beam production *
	construction and assen Moiré deflectometer		/ measurement with Ar missioning in situ						gravity measurement with Ar atoms
				(anti)hyd	drogen beam	gravity measurement			first Antihydrogen gravity measurement
		construction a of decelerator		of decelera magn. trapp					trapped Hydrogen
						tests of decelerat and magn.trapp			trapped Antihydrogen [*]
			construction and cor Lyman- α laser (radial)	cooling of trapped Antihydrogen		cooling [*] and spectroscopy [*]
								improved gravity meast.	impr. cold Antihydrogen gravity measurement [*]
									* PhD thesis topics

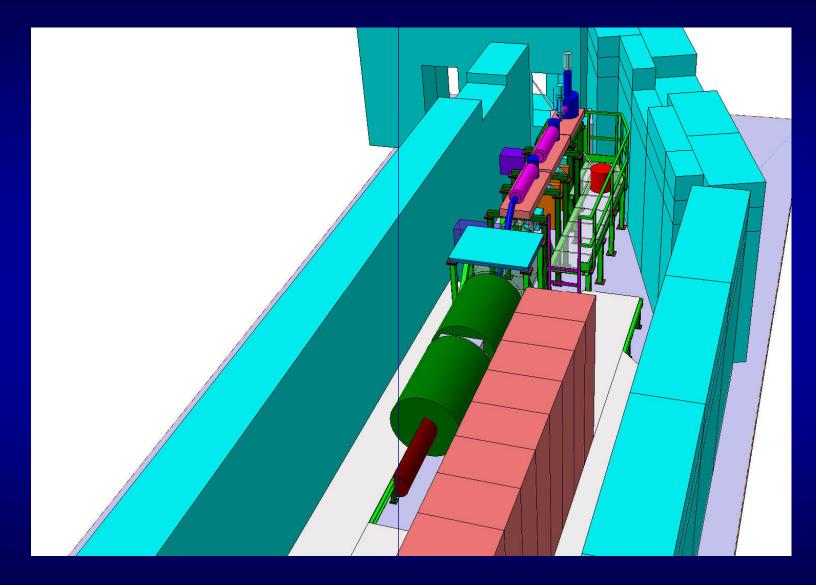
AEGIS beamline in AD and DEM zones


•AEGIS beamline equipment:

•Extension of beamline in DEMzone used by ACE

•Upgrade of MWPC:s in all ejection lines: GEM detectors + new electronics

Magnets					
Element	Туре	BI [Tm]	I [A]	Imax	
DEM.DHV32	PSB Type 1	0.0081/0.0079	+-10	10	
DEM.BHZ35	MEA43	0.175	73	80	
DEM.DHV52	PSB Type 1	0.0081/0.0079	+-10	10	
Element	Туре	K1 [m-2]	GL [T]	I[A]	Imax
DEM.QN40	QTR	0.2548	0.091	8.9	50
DEM.QN50	QTR	0.5550	0.1981	19.4	50
Power	converters				
Element	Туре	I nominal [A]	Imax [A]		
DEM.DHZ32	LPSS 35V 24A	0	+-24		
DEM.DVT32	LPSS 35V 24A	0	+-24		
DEM.BHZ35	2*60V/100A	73	+-100		
DEM.QN40	LPSS 18V 50A	8.9	+-50		
DEM.QN50	LPSS 18V 50A	19.4	+-50		
DEM.DHZ52	LPSS 35V 24A	0	+-24		
DEM.DVT52	LPSS 35V 24A	0	+-24		
MWPC/GEM	detectors				
DEM.MWPC33					
DEM.MWPC37					
DEM.MWPC54					
Vacuum	equipment				



IEFC 11/2/2010

T. Eriksson CERN BE/OP

Beamline schedule

- Final layout/optics
- Final mechanical design + drawings
- Vacuum chamber fabrication
- Magnet refurbishing/tests
- Power converter refurbish/purchase
- MWPC/GEM tests
- Installation:
 - MWPC electronics (started Aug .09)
 - MWPC chambers
 - Vacuum chambers/equipment
 - Magnets
 - Power converters/cabling/controls

1 Sept 09 1 Nov 09 1/11/2009 -1/3/2010 =>1/3/2010 2009/2010 =>1/11/2009 shutdown 09/10 + during 2010 run

Progress:
Shutdown 2010, phase 1:

Finish all installation work inside AD ring enclosure before startup

During 2010 run, phase 2:

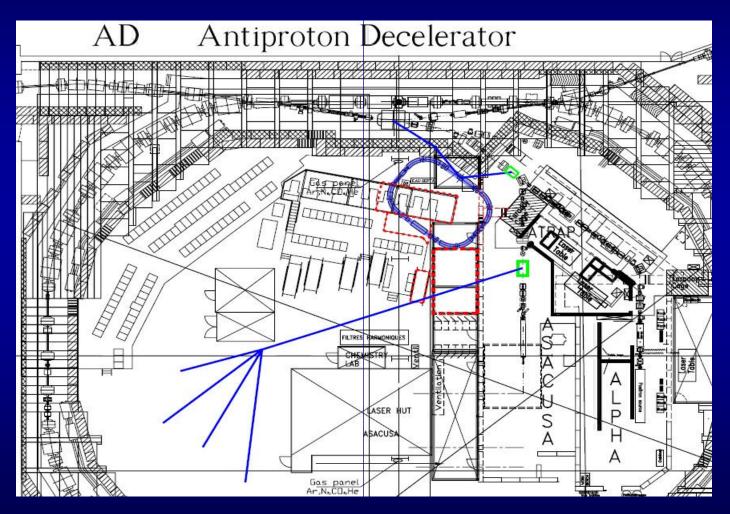
Installation in DEM-zone (access ok)
Equipment tests

					AD	DEM expt AE	GIS	
ID	Task Name	Duration	Start	Finish	Resource Names	anuary 2010	February 2010	March 2010
1	Acobs ring AD	53 days	Thu 07/01/10	Mon 22/08/1		02 05 08 11	14 17 20 23 28 29 01 04 07 10 13 16	
2		and analysis		and and the second	1	-		
-		-				-		
4	Coté machine	42 days	Thu 07/01/10	Ed 05/03/1		-		
5	Chambres a vide		Thu 07/01/10			· · · · · · · · · · · · · · · · · · ·		
6	Etude design chambres		Thu 07/01/10			-	ENMER	
7	fabrication chambre traversante (dans blindage)		Mon 18/01/10			-		- EN/MME
8	Deconnection des 2 GEM		Thu 07/01/10			0 85/81		
9	Mise a la PA et deconnecter la chambre pour sciage		Mon 18/01/10			-	TENSC	
10	Mettre les 2 GEM hors faisceau		Mon 18/01/10			-	НЕЛІН	
11	sciage de la 1ere partie de la chambre sur place				EN/MME radioprotec	2	EN MME.radioprotection	
12	sciage du souffet (lieu a definir suivant débit de dose)				EN/MME radioprotect		EN/MME, radioprotection	
13	Nettoyage souffet		Fri 22/01/10				ENMME	
14	soudage du souffet sur chambre dans la machine				EN/MME radioprotec	2	ENAME radiosetection	
15	installation chambre traversante		Mon 22/02/10					TENSC
16			Mon 18/01/10			-		
17	Supports Etude design supports DHV et chambre traversante		Mon 18/01/10			-	-EN/MEF	
18	fabrication des 2 supports		Mon 25/01/10			-	ENWEF	
			Wed 10/02/10			-	ENWER	
19 20	installation des 2 supports					-	- Fromer	
20	Almant installation aimant correcteur DHV		Wed 24/02/10 Wed 24/02/10			-		W
						-		
22	GEM	2 days				-		0 -0
23	installation du GEM coté exp	1 day						P
24	Alignement du GEM	1 day				-		
25	Vacuum		Mon 01/03/10					
28	Test de fuite	5 days	Mon 01/03/10	Fri 05/03/1		1		(discussion)
	IEFC 11/2/2010				T. Eriksson	n CERN BE	C/OP	11

.

Removal of 20T concrete pillar supporting ATRAP2 positron accumulator zone
Replaced by metallic structure to make space for AEGIS equipment
It went well.....

- SPSC request:
- We have already identified 2 points which will require some attention, namely:
- a better quantification of the gains for the experiments, with some real practical examples for each of them;
- the implications of an improved AD on the experimental area in order to be able to host more experiments.

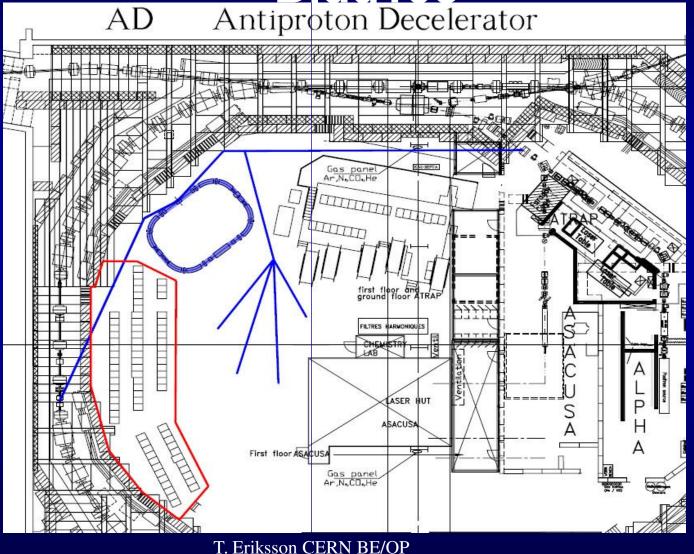


ELENA location

- Building 193
- Building 181
- New building
- Conclusion

ELENA location 1: Initial place

IEFC 11/2/2010

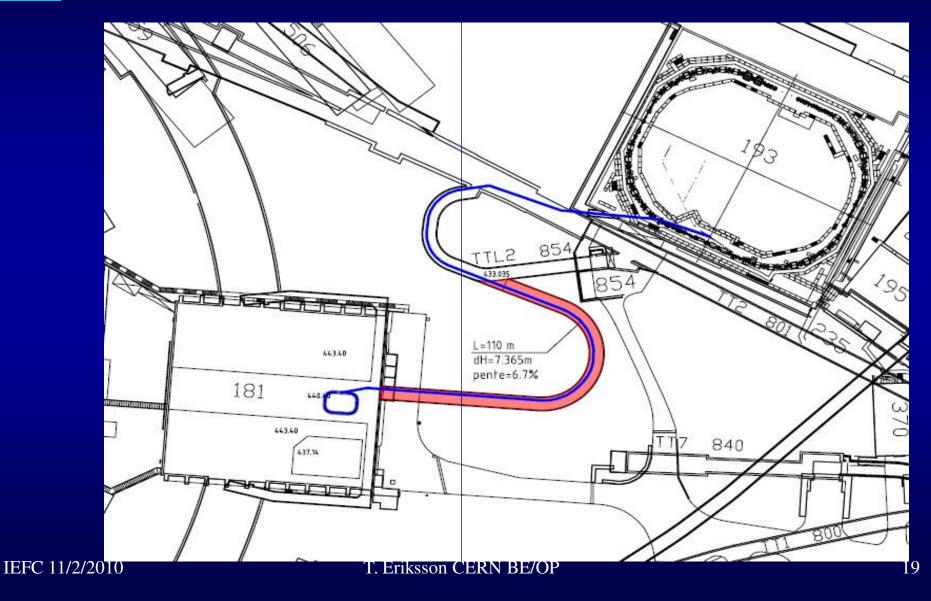


ELENA location 1: Initial place

- + Short transfer lines
- + Few new magnets
- + Lowest cost
- + No AD ring modifications
- + No change for the present experimental zone (low and high energies possible)
- + New experimental zone at low energy obtained with some difficulty (transfer line + shielding under user barrack, access)
- o Modification of ASACUSA experimental zone
- Tight space (no upgrade possible, difficulties for ELENA installation and access)
- 4 kicker modules instead of 2 to move
- Difficult to modify shielding
- Perturbations to 4 users during installation IEFC 11/2/2010 T. Eriksson CERN BE/OP

ELENA location 2: New place in Blda193

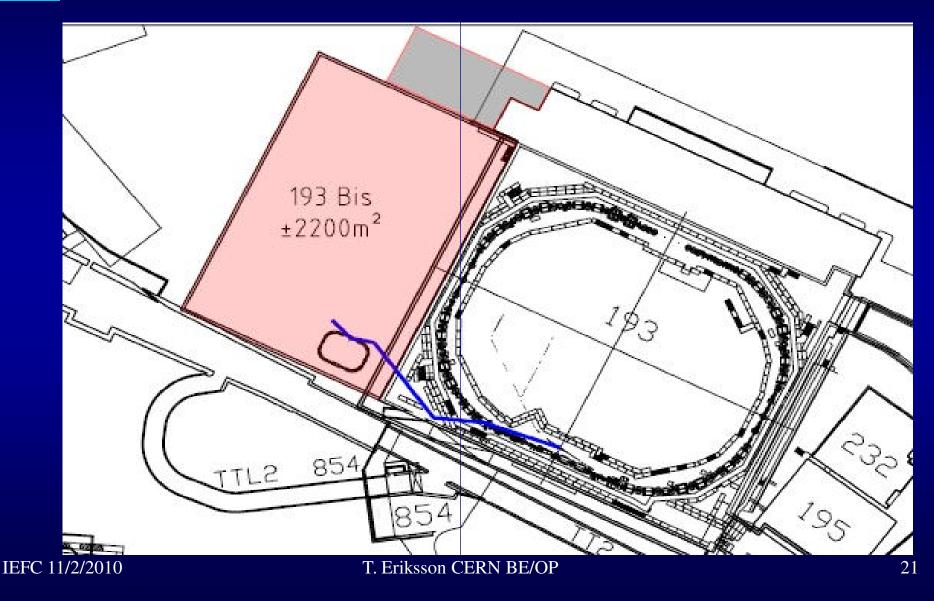
IEFC 11/2/2010



ELENA location 2: New place in Bldg193

- + Plenty of space (future upgrade possible)
- + Easy access (no particular re-arrangement in AD hall needed)
- + No perturbation to existing ejection lines and shielding
- + New experimental zone at low energy possible
- + No change for the present experimental zone (low and high energies possible)
- + Simple transfer line to new zone
- Move racks, new cabling cost?
- New low energy septum magnet (+kicker?)
- Long 100keV transfer line (stability?)

ELENA location 3: Building 181



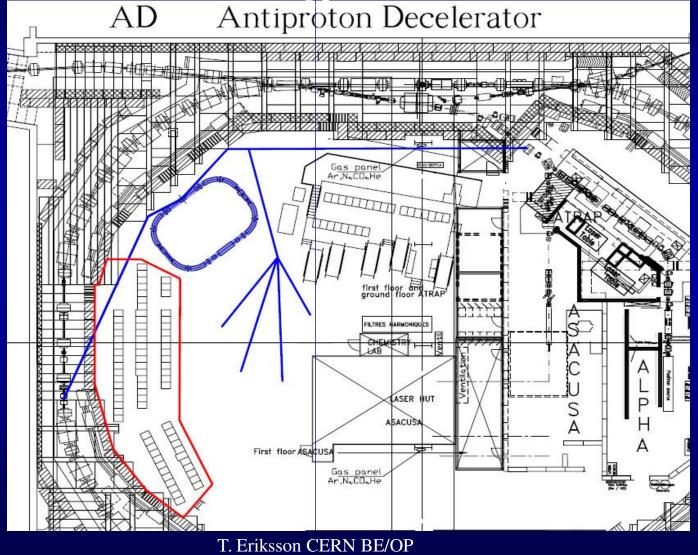
ELENA location 3: Building 181

- + Space for future upgrade and a new e+ source (1000m2 or more, max. 2600m2)
- + Keep high energy experiments in Bldg 193 and low energy experiments in new location
- + No modifications in AD ring
- + Several new experimental zones at low energy possible
- + No perturbation to existing experiments during ELENA construction and commissioning
- Very long 5MeV beam line, expensive
- Civil engineering work (>100m long new tunnel, max. 10% slope) expensive (cost of about 8-10 MCHF)
- Long downtime for moving and restarting experiments (+6 months?)
- Bldg 181 presently used for other activities (LHC magnet assembly press, workshops, clean room)

ELENA location 4: New Building

ELENA location 4: New Building

- + Plenty of space for future upgrade and for a new e+ source (better layout, 2200 m2)
- + Keep high energy experiments in Bldg 193 and low energy experiments in new location
- + Short new 5MeV extraction beam line
- + No modifications in AD ring
- + Several new experimental zones at low energy possible
- + No perturbation to existing experiments during ELENA construction and commissioning
- New expensive building (cost of about 15-20 MCHF and delay of the project by about 1.5 years)
- Long downtime for moving and restarting experiments (+6 months?) T. Eriksson CERN BE/OP IEFC 11/2/2010


Conclusion

- + Plenty of space (future upgrade possible)
- + New experimental zone at low energy possible with a very simple transfer line
- + Easy access (no particular re-arrangement in AD hall needed)
- + No perturbation to existing ejection lines and shielding
- + No change of the present experimental zone (low and high energies possible)

• Many advantages, small number of disadvantages show that location 2 is very attractive and very elegant place to put ELENA.

ELENA location 2: New place in Bldg193

IEFC 11/2/2010