BEAM REQUESTS VERSUS WHAT CAN BE DELIVERED (PROTONS AND IONS)

Rende Steerenberg BE-OP

Contents

- Injectors Accelerator Schedule 2010
- Approved/Committed User Requirement
- Machine/Facility Limitations
- Proposed Basic 2010 Super Cycles
- What Can we Provide
- What are the Shortfalls
- Some Ideas to Reduce Shortfalls
- Conclusions

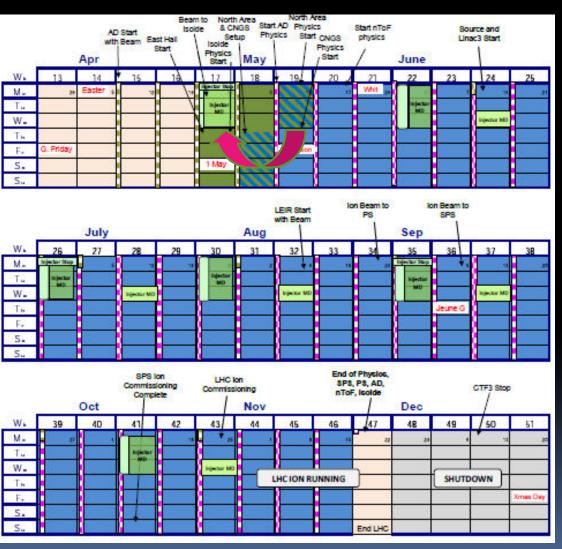
2010 Schedule

- The 2010 Accelerator Schedule v. 1.3, as approved by the RB on 2 December, was used as basis taking into account:
 - The start and end dates of each facility/experiment.
 - That the LHC monthly technical stops that are taken as MD and technical stops, thus no physics
 - Five dedicated and floating 8 hour MD's that are put on the schedule as place holder, but that might shift in time.

Changes following recent SPSC meeting

(19 – 20 January 2010)

- The SPSC anticipated shortfalls and has made proposals to reduce the impact on certain experiments/facilities
- CNGS earlier start (2 weeks)
 - 29 April instead of 12 May
- 1 EASTB cycle less to give 1 nTOF cycle more resulting in:
 - 4 EASTB cycles day and night
 - 4 dedicated nTOF cycles day and night


Approved User Requirements 2010

- CNGS: 4.5x10¹⁹ protons integrated
- North Area (Compass): 3x10⁵ spills (9.6 sec.)
- nTOF: 1.6x10¹⁹ protons integrated
- East Area
 - North Branch:
 - Running the whole run, but no clear required number of spills or protons available
 - T9 + T10 \rightarrow 335 days in total
 - T11 (Cloud) → 80 days
 - DIRAC: 2.1x10⁶ spills
 - T7 irradiations: ~200 days with 2 spills per super cycle.
- AD users: 28 weeks (1 cycle every 80–100 sec)
- ISOLDE: 43% duty cycle (2μΑ)

Machine/Facility Limitations

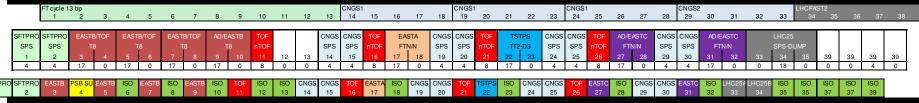
- Maximum beam current of 2 μA for ISOLDE
- Maximum PS MPS load until POPS is operational
 - Based on 1.16x10⁸ MJoules per year/run
- RMS current SMH57
 - Less cycles required if beam sharing reintroduced.
- As long as there are enough CNGS cycles following the (long) FT cycle there is no rms issue on the SPS MPS
- PSB and PS are surface machines beam losses generate certain radiation levels outside the machine
- Every change in the SPS super cycle has knock-on consequences for the PSB and PS users

PS MPS Load calculation

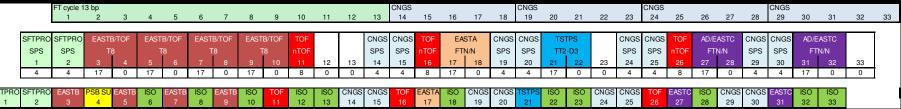
- 30 weeks of PS running, not counting running for LHC alone
- 5040 hours
- Slightly lower than2009 run time
- Therefore the average5 MW limit for PSMPS remains valid
- Not taking into account the periods of dedicated LHC running

Proposed basic 2010 super cycles

- There are four basic super cycles proposed:
- Operational day super cycle containing:
 - SPS: Fixed target, CNGS, LHC or MD
 - PSB/PS: nTOF, AD, East Area, ISOLDE, MD
- Operational night super cycle containing:
 - SPS: Fixed target, CNGS
 - PSB/PS: nTOF, AD, East Area, ISOLDE, MD
- LHC filling super cycle for protons
- LHC filling super cycle for ions

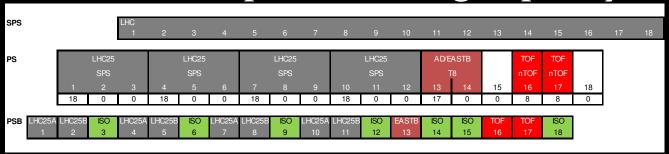

Basic assumptions

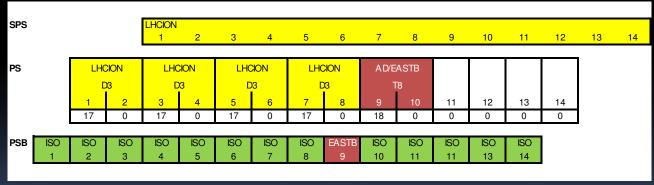
- Day super cycles from o8:00 until 18:00
 - → 10 hours
- Night super cycle from 18:00 until 08:00
 - → 14 hours
- Dedicated LHC filling (protons & ions) will take on average 4 hours per 24 hours, leaving 20 hours per day for other physics.
- No Physics during MD's
 - $5 \times 3 \text{ days} = 15 \text{ days}$ 360 hours
 - 5 x 8 hours = 40 hours
- Ion commissioning foreseen on MD cycle
- Last years' machine availabilities are taken into account


BEAM REQUEST

Operational Day & Night Super Cycle

Day Super Cycle (46.8 sec):


Night Super Cycle (39.6 sec):


The day super cycle can go beyond 18:00 depending on the LHC needs (lower duty cycle for others)

Dedicated LHC Filling Super Cycles

Dedicated LHC proton filling super cycle:

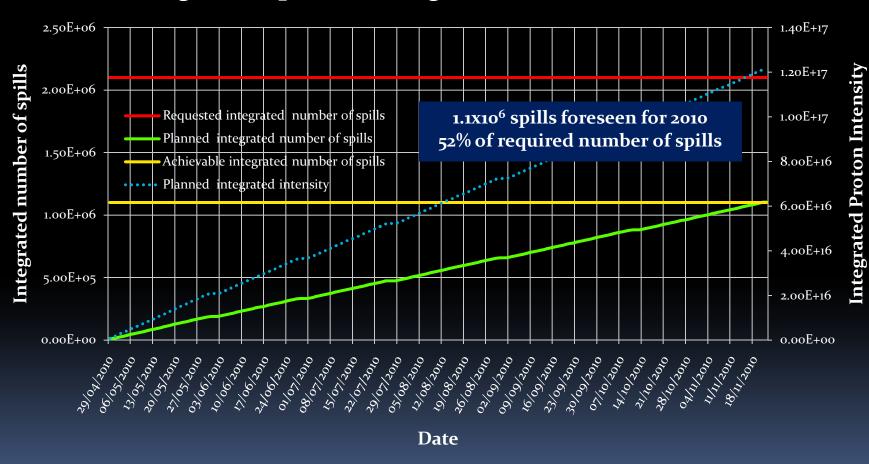
Dedicated LHC ion filling super cycle:

The other physics beams displayed are not taken into account for the intensity/spill planning

ISOLDE (HRS & GPS & REX) 2010 running

- Starts 26 April, finishes 22 November giving 210 days
- Taking into account the MD's etc. this leaves 210 –
 15 2 = 193 days for physics (556 8-hour shifts)
- ISOLDE bases their schedule on 8-hour shifts with
 2 μA on target
- To have 2 μA on target they need 43% duty cycle with 3x10¹³ protons per cycle
- In the proposed super cycles ISOLDE will have:
 - 36% duty cycle during day-time (excl. LHC filling time)
 - 33% duty cycle during night-time (excl. LHC filling time)
- Final ISOLDE physics schedule available in March

DIRAC request and particularities


- Initially approved for 2.1x10⁶ spills per year
- The intensity per spill is 1.1x10¹¹ protons
 - □ Produced using 4 PSB rings → very low intensity
- DIRAC cannot accept parasitic nTOF beam
 - DIRAC nTOF bunch intensity not compatible for single beam control
 - Spill quality degrades too much (peaks/spikes)
- SPSC in January proposed to give 1 cycle less to DIRAC with respect to 2009 and give it to nTOF instead. (remains to be approved by RB)

DIRAC 2010 running (East Area T8)

- Starts 29 April, finishes 22 November giving 209 days
- Taking into account the MD's etc. this leaves 209 – 15 - 2 = 192 days for physics
- To provide 2.1x10⁶ spills we would need
 35% of the super cycle for DIRAC (EASTB)
- In the proposed super cycles DIRAC will have 4 EASTB cycle per super cycle day and night (~ 21% duty cycle)

DIRAC Integrated Spill Planning 2010


Integrated Spill Planning For the 2010 DIRAC Run

East Area T7, T9, T10, T11 2010 running

- Starts 29 April, finishes 22 November giving 209 days
- Taking into account the MD's etc. this leaves
 209 15 2 = 192 days for physics
- Usually:
 - 2 EASTC cycles for T7 irradiation
 - 1 EASTA cycle for T9, T10 & T11 (enough for Cloud ?)
- In the proposed super cycles 3 East cycles are to be shared between EASTA and EASTC
- User time not fully scheduled
- No real shortfall in spills or protons

2010 PS Fixed Target Planning

3 EASTA cycles in S.C.

3 EASTC cycles in S.C.

AD 2010 running

- Machine setting up: 12 April until 10 May
- Physics starts 10 May, finishes 22 November giving 196 days (4 weeks longer than in 2009)
- 6 AD dedicated 8 hour Monday MD's
- 5 Different user groups:
 - ACE, ALPHA, ASACUSA, ATRAP, AEGIS (MD-time)
- Taking into account the MD's etc. this leaves 196 –
 15 2 2 = 177 days for physics
- The position in the PS super cycle is optimised to maximize AD duty cycle (1 injection per ~ 80 sec)
- No real impact on other users

Approved nTOF Physics program (1)

- The INTC has approved 5 proposals:
 - CERN-INTC-2006-006: Proposed study of the neutron-neutron interaction at the CERN nTOF facility.

Number of protons accepted: **0.2X10**¹⁹

 CERN-INTC-2006-012: The role of Fe and Ni for s-process nucleosynthesis in the early Universe and for innovative nuclear technologies

Number of protons approved: 1.8x10¹⁹

 CERN-INTC-2006-016: Angular distributions in the neutron-induced fission of actinides

Number of protons approved: 0.15X10¹⁹

CERN-INTC-2008-035: n_TOF: New target commissioning and beam characterization

Number of protons accepted: 2.45X10¹⁸

CERN-INTC-2009-025: Neutron capture cross section measurements of 238U,
 241Am and 243Am at n_TOF

Number of protons accepted: 8x10¹⁸ (only for 241,3Am)

Grand total: 3.2x10¹⁹ protons

Approved nTOF Physics program (2)

- Grand total of approved experiments: 3.2x10¹⁹ protons
- In 2009 **7.45**x10¹⁸ protons were **delivered** and the following was partially done:
 - Commissioning (50% to be done in 2010 with borated water)
 - 50% of the Fe&Ni proposal completed (CERN-INTC-2006-012)
- Approved protons remaining: 2.4x10¹⁹
- nTOF realistically requests 1.6x10¹⁹ for 2010

nTOF particularities

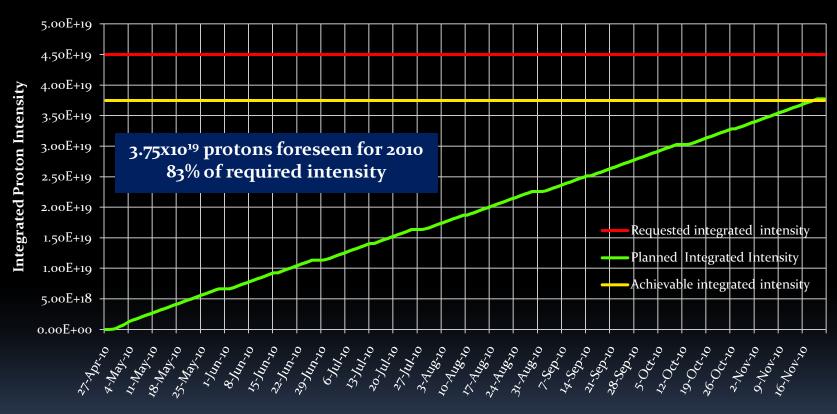
- Two types of beam are produced
 - Dedicated single bunch: 7x10¹² protons
 - Parasitic single bunch: 3.5x10¹² protons
- Just before extraction there is a bunch rotation to shorten the bunch to below 25 ns (4σ) .
- The nTOF facility can practically receive
 4.9x10¹⁹ p.o.t. per year
 - Improved cooling, ventilation and shielding
- At start-up 2010 the experimental zone will be a "Class A Laboratory"

nTOF 2010 running

- Starts 17 May, finishes 22 November giving 189 days
- Taking into account the MD's etc. this leaves 189 − 15 - 2 = 172 days for physics
- Day & night 4 dedicated + 3 parasitic cycles in the super cycle

nTOF integrated intensity planning 2010

Integrated Intensity Planning For the 2010 nTOF Run


In case of 8x10¹² protons per bunch we could achieve 1.05x10¹⁹ protons integrated for 2010.

CNGS 2010 running

- Recently SPSC proposed moving the CNGS start forwards by two weeks (approval RB?)
- Starts 28 April, finishes 22 November giving 207 days
- Taking into account the MD's etc. this leaves 207 – 15 - 2 = 190 days for physics
- Access to CNGS beam area requires often slightly longer stops than the 3 day MD period.

CNGS Integrated Intensity Graph 2010

Integrated Intensity Planning for the 2010 CNGS run

Date

Without 2 week extension we will achieve 3.4x10¹⁹ protons integrated for 2010.

SPS North Area (COMPASS)

- Starts 10 May, finishes 22 November giving 196 days
- Taking into account the MD's etc. this leaves 196 − 15 - 2 = 179 days for physics
- 3x10⁵ spills of 9.6 sec requested
- User time nearly fully scheduled

SPS North Area Integrated Spill Planning 2010

Integrated number of spill Planning for the 2010 SPS North

What and Where are the Short Falls?

Client	Unit	Requested	Achievable	Missing
CNGS	p+	4.5X10 ¹⁹	3.75X10 ¹⁹	17%
TOF	p+	1.6x10 ¹⁹	0.85x10 ¹⁹	47%
East Area (DIRAC)	Spills	2.1X10 ⁶	1.2X10 ⁶	48%
ISOLDE	Duty cycle	43%	~ 34%	21%

Possible means to reduce short falls (1)

ISOLDE:

- Pulse PSB at 600 ms, while keeping PS with same bp length
 - > 50% guaranteed duty cycle for ISOLDE
 - Every 2nd cycle for PS if required (more than at present)
- Can we use synergy for LHC upgrade proposal ?
- Higher primary beam energy → fewer protons required ?

East Area:

- Large number of East Area cycles required in super cycle
- Re-instate beam sharing to avoid cycle duplication
- Cycle requirements in new East Area lay-out proposal ? (see talk Lau Gatignon)
- Future of DIRAC in PS ? (plans to move to SPS after 2011)
- More effective use of EASTB cycles for DIRAC
 - Higher intensity with less cycles gives same integrated intensity?
 - Would make parasitic nTOF perhaps possible

Possible means to reduce short falls (2)

nTOF:

- Try to produce higher intensity for dedicated
 nTOF cycle (8x10¹² instead of 7x10¹² → + 14%)
- Fission experiments could accept multiple bunches with specific spacing → to be checked

In general:

- Prolong run for PS complex into reduced power consumption period (PS complex cycling is not so expensive)
- Evaluate possibilities to optimise cycles following POPS commissioning in PS

Conclusions

- The requests for certain facilities exceed by large the production means
- A set of reasonably achievable goals for 2010 are proposed.
- For the longer term we will have to improve the production capability and try to use our facilities more efficiently if we have to meet the requests
- Some possible fields of improvement:
 - 600 ms pulsing of PSB → guaranteed 50% ISOLDE duty cycle
 - Reintroduce East Area beam sharing to minimize cycle duplication (depends on approval of newly proposed lay-out)
 - Increase dedicated nTOF bunch intensity to 8x10¹²
- Profit from possible synergy with LHC upgrade proposal

Acknowledgements

- Horst Breuker for providing the data as requested/approved for the different experiments
- Karel Cornelis for his input on the CNGS intensity predictions
- The nTOF collaboration for their discussions on the required intensity and the target capabilities, in particular Enrico Chiaveri, Vasilis Vlachoudis and Marco Calviani
- Alexander Josef Herlert for his input on ISOLDE.

Thanks for your attention