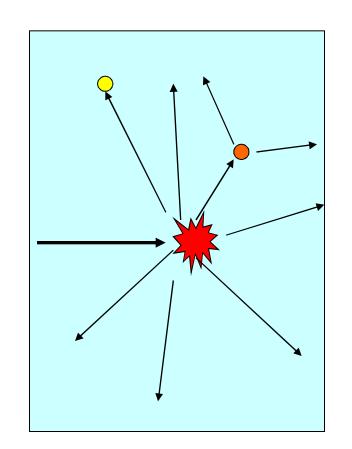
Radiation Protection during design, operation and dismantling of target areas

> Thomas Otto based on material from RP group

Proton Target Areas at CERN

AD	26 GeV/c	0.24 kW	
N-TOF	20 GeV/c	1.25 kW	
ISOLDE	1.4 GeV	3 kW	
North	400 GeV/c	10's of kW	
CNGS	400 GeV/c	440 kW	



Radiation Protection Items

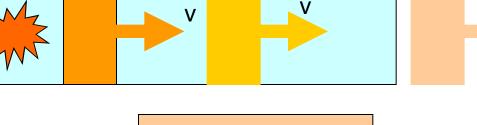
- Ionisation and radiolysis
 - Chemically Aggressive atmosphere (NO_x, O₃)
- Activated air (spallation, activation)
 - Release to the environment
- Activation of ground and potentially ground water
 - Environmental concern (³H, ²²Na)
- Material activation
 - High ambient dose rates from activated material
 - Future radioactive waste

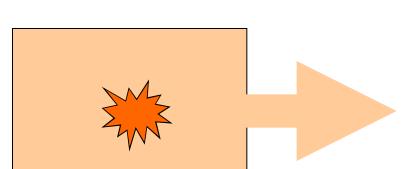
Air Ionization and Activation

- Energetic secondary particles emerge from target
- Traverse air, ionize and activate
- $\Sigma A \sim \lambda$ (pathlength in air)
- Estimate activation by heuristic formulae or Monte-Carlo simulation
- Mainly short-lived beta-plus emitters ¹¹C, ¹³N, ¹⁵O, ⁴¹Ar

Purpose of "Nuclear" Ventilation

- Create dynamic depression in the most radioactive area – protect other areas from leaking of activation/ contamination
- Direct airflow to release point
 - Allow release at a suitable point (e.g. at height)
 - Permit aerosol filtering at unique point
 - Permit monitoring at unique release point
- Plus the usual purposes of ventilation, such as cooling, removal of noxious agents ...

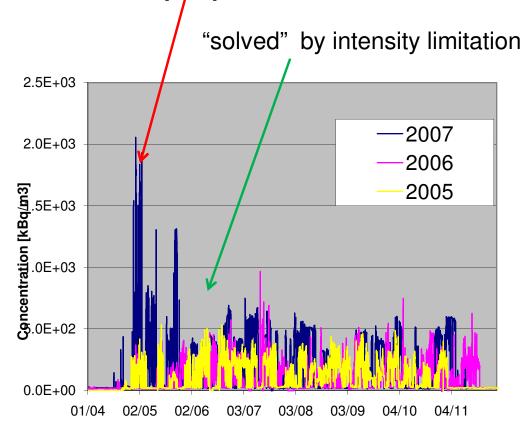

6


Transport and Release of Air

- Two simplifying cases:
 - Laminar flow of air volume at speed v (e.g. in tunnel)
 - Complete mixing of air in target volume, average dwell time τ

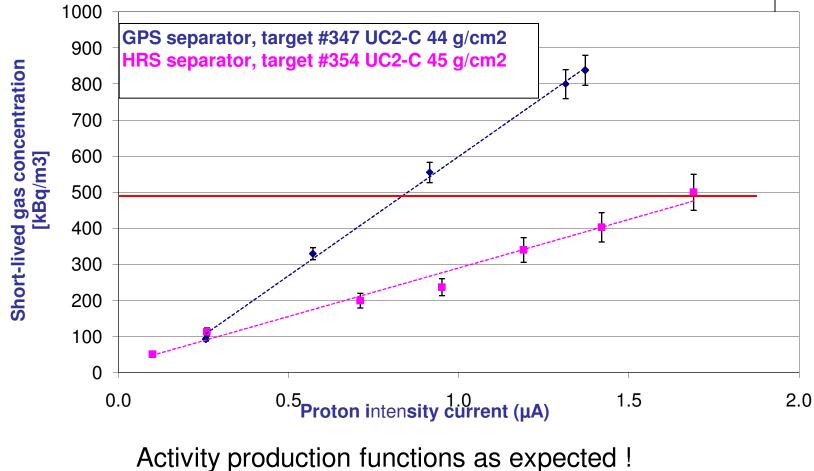
Under these assumptions, activation release rate (Bq/s) can be estimated from ventilation speed

IEFC Workshop 2010 - Thomas Otto



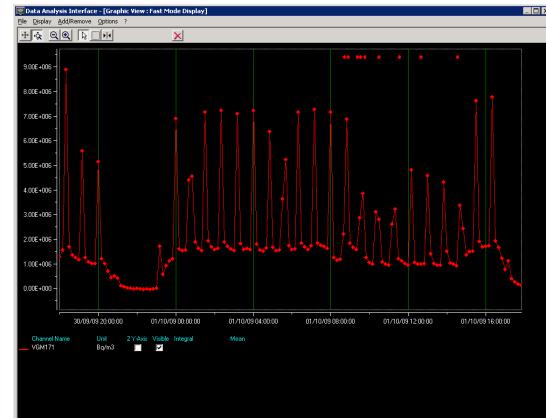
ISOLDE 2007

The simplifying assumptions do not always work as advertised.


Small changes in air flow may have a big effect.

It took man-months of work at ISOLDE to reestablish release figures similar to those achieved before 2007 2007: 3-times higher activity concentration at stack for equal proton beam current

Release vs. current


IEFC Workshop 2010 - Thomas Otto

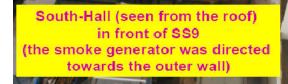
n-TOF 2009

Integrated release higher than expected

- lack of tightness in target area requires higher extraction rate
- Spikes ??
 From degassing system of cooling water: ¹⁵O
- Solved by additional delay / decay tank

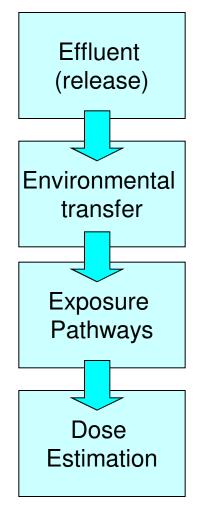
Due to current interest: No directed extraction - PS

- PS volume ≈ 24 000 m³
- Ventilation injects 40 000 m³/h
- 1.7 exchanges / hour
- p(tunnel) higher than p(environment)
- Smoke tests revealed:
 - Uncontrolled release
 - One reason for higher-than usual ambient dose rates in PS ring


11

PS Smoke Tests 2005

On the roof


Ventilation system (a lot of small holes, which should suck the air, but did not seem to)

A lot of smoke appeared after few minutes

Environmental model

- A set of conservative models for
 - transport of radionuclides into and in the environment (by air and water, deposition, resuspension, uptake by crop and animals)
 - Exposure of representative group of public (irradiation, uptake)
- Estimated dose can be compared with appropriate limits

Dose from CERN releases (Meyrin site, 2008)

	Release*	Dose
	(GBq)	(μ S v)
Short-lived beta emitters	13240	3.05
Other βγ (⁶⁰ Co)	0.0092	0.22
Stray radiation	-	3.7
Total		7.0

•PS underestimated

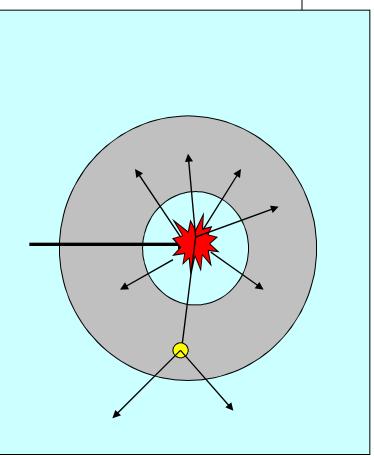
(non-representative sampling point) •PSB, EAST, AD at present not monitored •N-TOF 2009:

+5000 GBq, +1.1 μSv

- For comparison: Dose to reference groups at Swiss NPP:
 - PWR: < 1 μSv /y

Airborne releases are at the limit of the optimisation threshold. (10 µSv / y)

Any increase of releases will have to be justified and optimised

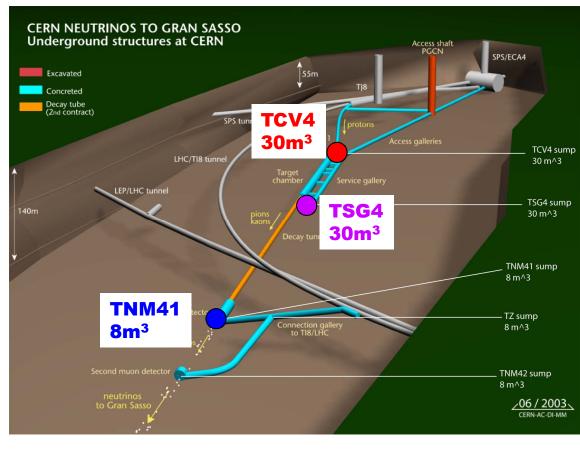

Reduction of air-borne releases

- Add shielding in target area
 - Reduce track length in air
- Closed ventilation system
 - Cool and dry air in closed circuit
 - Only vent before access
- Release from height
 - Construct a stack of h > 80 m

Shielding in target area

- Shielding absorbs secondary radiation cascade emerging from target
- Less activation of air
- Activation of shielding

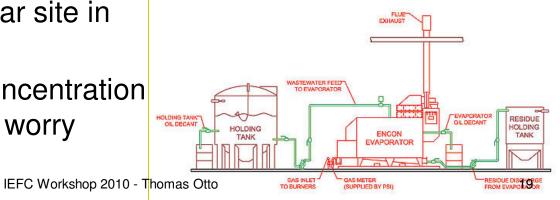
CNGS as an example


The target and horn are well shielded Crane available for remote dismantling of shielding

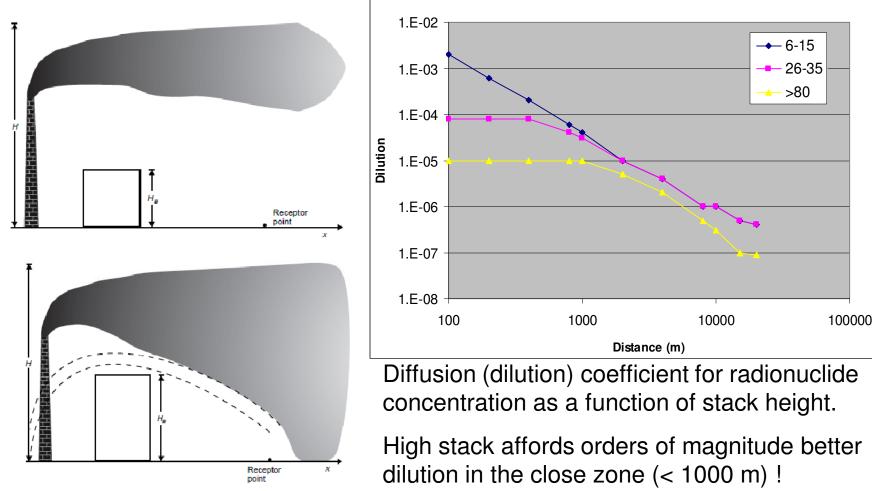
Closed ventilation system

- Cool & dry activated air
 - "never" release
 - only before access
- Appears a good idea, but
 - Dynamic depression difficult to maintain
 - Accumulation of ³H in condensate

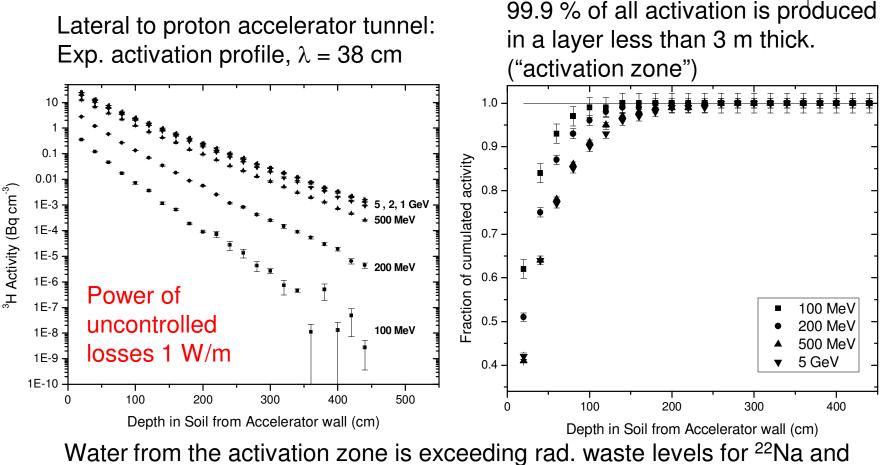
Tritium – where from ?


- Tritium is copiously produced as a light fragment in spallation reactions in (humid) air and in structural materials.
- It diffuses out of the walls in form of HTO
- In a closed ventilation system, the moist air is condensated in the dehumidifiers and the Tritium concentrated

Consequence of CNGS – ³H


- N-TOF 2008: "open" ventilation
 - The concentration of short-lived beta emitters allowed this solution
- Tritiated water
 - Storage in tanks
 - Elimination via nuclear site in France
 - Evaporation the concentration in air is no reason to worry

Release from height (stack)

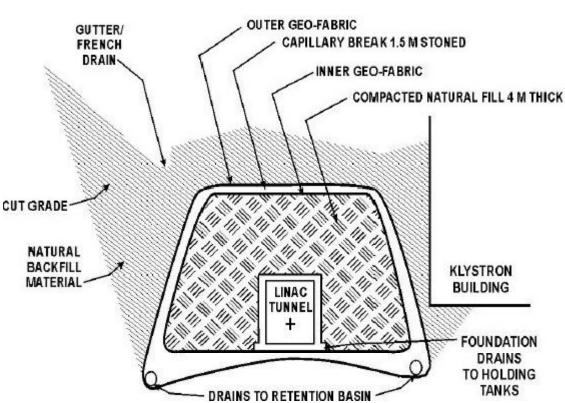

IEFC Workshop 2010 - Thomas Otto

Ground activation and ground water contamination

- Soil around accelerator is inevitably activated
- Activation may be fixed or unreachable for any human purpose (e.g. LEP / LHC)
- Activation migrates with ground water and runoff water
- Fermilab experiments (1980's):
 - ⁷Be, ⁵¹Cr, ²²Na, ⁵⁴Mn, ⁴⁶Sc, ⁴⁸V, ⁵⁵Fe, ⁵⁹Fe, ⁶⁰Co, ⁴⁵Ca and ³H are produced
 - ²²Na, ³H are soluble and easily transported

Distribution of activation

Water from the activation zone is exceeding rad. waste levels for ²²Na an must be dealt with appropriately (infiltrations!)


22

Protective layers

ORNL DWG 98C-337

- Drinking water resources outside the "activation zone" can be protected with a "geomembrane"
- (example SNS)

Situation at CERN

- Accelerators and target areas close to the surface (Linac, PSB,PS, East, AD, ISOLDE, n-TOF, North) are far from drinking water sourcing areas
- The potentially activated run-off must be diluted, in some cases in little streams with limited capacity
- Infiltration water in tunnels and target areas may be activated beyond free release guidelines

Waste from Target areas

IEF(

- Most target areas produce one-off waste, e.g. the ISOLDE frontends or the n-TOF target
- Highly activated, high ambient dose rate
- Find special agreements with national repositories for elimination and final storage

Waste from ISOLDE

- ISOLDE produces
 30 waste target units per year
- High dose rate and actinide (alphaemitter) content makes treatment in hot cell mandatory
- Temporary storage saturated
- Elimination pathway is required now

Summary

- Target areas have radiation protection topics in common
 - Activation, radioactive releases, waste production
- Imagine CERN increases beam power on targets:
 - Ventilation must be well-designed, air-flow fully understood
 - Release close to ground reaches its limits
 - closed circuit, high stack, shielding: no "silver bullet"
 - Ground activation becomes an issue for close-to-surface accelerators
 - Target areas produce highly activated waste
 - Suitable interim storage and elimination pathways must be defined