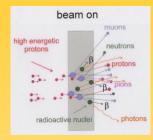


MONITORING SYSTEMS FOR RADIATION PROTECTION

Session "High intensity beam, radiation and safety issues" IEFC Workshop 2010 CERN – 10 to 12 February 2010

D. Perrin (DGS/RP-IL)

on behalf of DGS/RP & DGS/IE


EDMS 1061152

Introduction

Operation of accelerators involves beam losses,

CERN has the **legal obligation** to protect the public and the people working on site from any unjustified exposure to ionising radiation !

DGS/RP has the mandate **to monitor the radiological impact** of CERN's accelerators and installations by active monitoring.

Consequence for beam operation as defined in **SR16**: *Stop of operation when monitoring system fails*.

Content of the presentation

- > Monitoring systems overview
- > ARCON
- > RAMSES
- > Reliability & maintainability
- > ARCON RAMSES Bridge project
- > RAMSES II Light project
- Conclusions

Overview

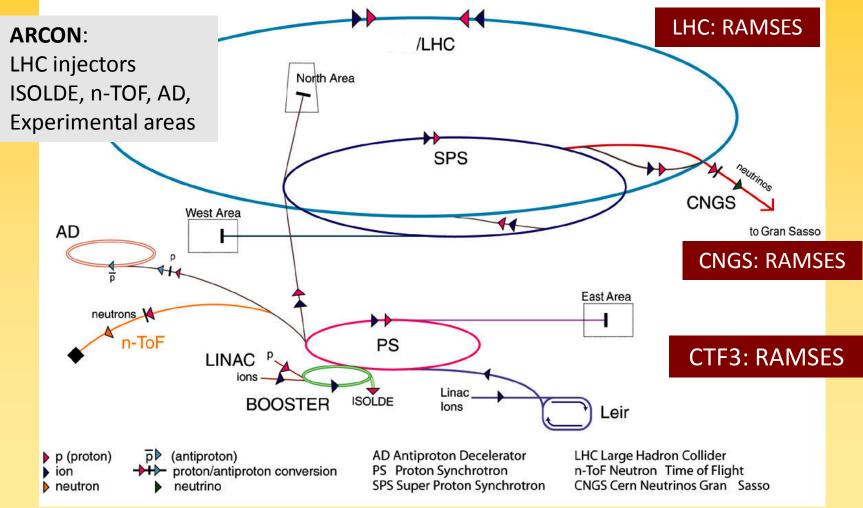
Complexity of monitoring evolves with CERN activities

- High intensity beams \rightarrow risks of higher losses
- Size of machines and number of areas
- Radiation to electronics
- High magnetic fields
- Aging of infrastructures
- Limited intervention time
- Limited resources \rightarrow more dependency to external partners

And not only

- Legal requirements \rightarrow Decrease of max dose to public & workers
- Compliance to international standards for RP instrumentation

Monitoring systems for RP


Overview - Main functions

Monitoring radiation variables (local and remote display)

- Permanent real-time monitoring of ambient dose equivalent rates (underground accessible areas, on the surface, in- and outside CERN perimeter)
- Permanent real-time measurement of radioactivity in released gases and fluids (radioactive nuclides)
- Permanent measurement of induced activity during accelerators stop/shutdown
- Alarm functions (local and remote)
 - Generate radiation alarms based on ambient dose equivalent rates
 - Generate interlock signals
 - Generate technical alarms
- Long term permanent and reliable data logging
 - Measured values
 - **Events** (radiation alarms, interlocks, system fault alarms, technical alarms)
 - System configuration (historic of changes)

2 systems ARCON / RAMSES ~800 monitors

IEFC Workshop 11 February 2010

Monitoring systems for Radiation Protection

Monitoring systems for RP

Monitors for protection of the environment

ARCON and RAMSES use the same/similar type of monitors

RWM - RWS

Ventilation

VGM - VAS

Wind Monitoring

IEFC Workshop 11 February 2010

Monitoring systems for Radiation Protection

Monitoring systems for RP

Operational radiation protection monitors

ARCON and RAMSES use the same/similar type of monitors

REM counter

Gas filled, high pressure ionisation chamber

Beam-on: To protect workers in areas adjacent to accelerator tunnels and experiments against prompt radiation (mainly neutrons, E < some GeV) Alarm function

Air filled ionisation chamber

Beam-off: To protect workers during maintenance and repair against radiation fields caused by decay of radionuclides (mainly gammas, E < 2.7 MeV) **No alarm function**

Operational radiation protection monitors

Special monitors

Site Gate Monitor*

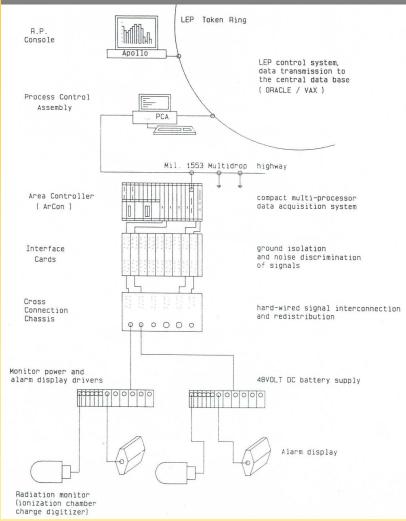
*ready for connection to access system

Operational radiation protection monitors

VME chassis (ARCON)

IEFC Workshop 11 February 2010

Monitoring systems for Radiation Protection


(RAMSES)

(Area Controller)

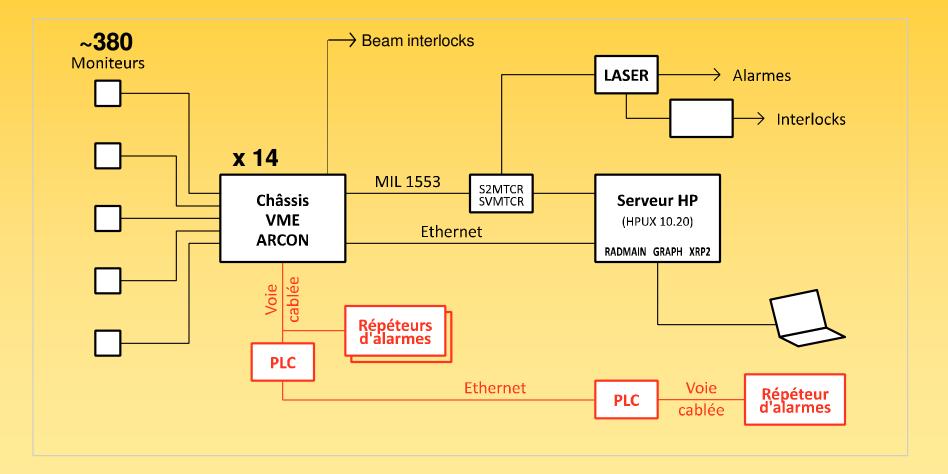
Overview - Main features

IEFC Workshop 11 February 2010

Radiation monitoring system of the PS complex and the SPS

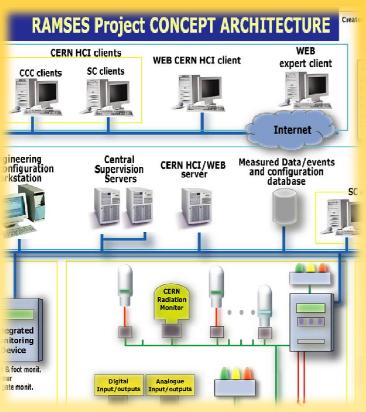
- CERN development in the early 80's for LEP
- VME Bus (CPU 68040)
- OS9 (Operating system)
- MIL1553 (field bus) / Ethernet TCP/IP
- Up to 64 counting inputs (current pulses)
- Up to 64 status outputs
- Still about 380 channels on ARCON

Main ARCON dates:


- 1989: Commissioning at LEP
- 1990 to 1994: Deployment on rest of CERN
- 1995: Diskless version Ethernet link
- 2010: Beyond end-of-life time, still **use for LHC injectors** and related facilities

Monitoring systems for Radiation Protection

Present architecture


DIATIORAMSES

(Radiation Monitoring System for the Environment and Safety)

Overview - Main features

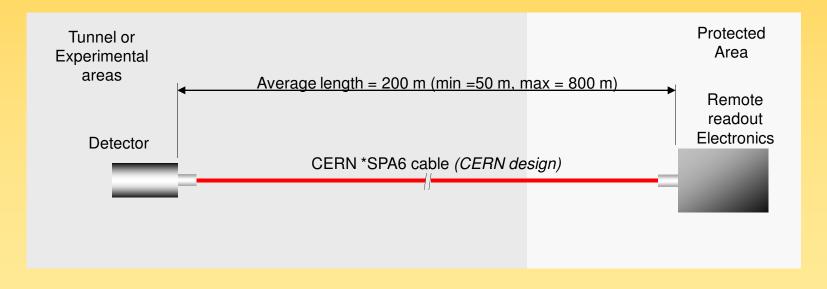
- Designed in 2004 to cover all CERN installations
- RAMSES limited to LHC due to budget restrictions
- Presently monitoring system for LHC, CNGS and CTF3, about 400 channels
- Developed, installed and maintained by an industrial contractor
- State-of-the-art failsafe decentralised monitoring system, designed to fulfil SIL 2 for the basic monitoring, alarming and interlock functions.
- Standard system for new projects (LINAC4) or extension of existing installations (HiRadMat)



Enhanced read-out electronics

For PULSED RADIATION FIELDS

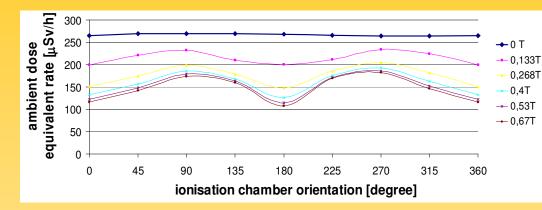
Measure current ranging from 10 fA (background level) up to 10 μ A NO CHARGE LOSSES \rightarrow NO switching permitted

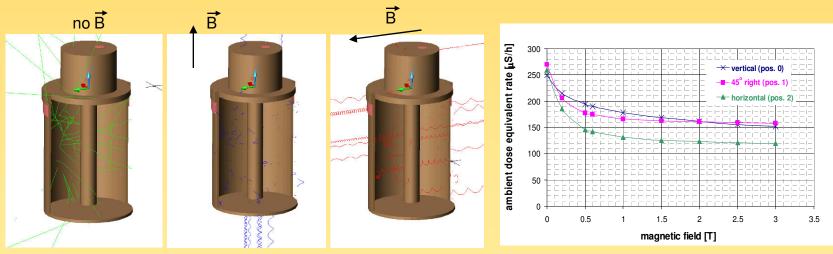


Very low current over long distances

HIGH RADIATION FIELDS during BEAM ON → REMOTE ELECTRONICS

Measure current ranging from 100 fA up to 10 nA at a distance up to 800 m





Measurement in magnetic field

Reliability / Maintainability

ARCON issues

Ageing system and technologically obsolete → increase of breakdowns

- Lack of spare parts (include monitors for radiation and environmental protection)
- Failure of measurement electronics (due to aging of electronics)
- VME chassis not to CERN standard (difficult to maintain, no longer produced)
- Microware OS9 no more supported
- Supervision system: no more maintenance from HP for HP10.20 operating system and hardware for HPSLZ18 server (not possible to migrate to a newer OS)
- MIL1553 (not fully compliant to standard, difficult to maintain, few experts)
- Applications difficult to maintain, no possible evolution (rely only on 1 expert + an old development tool, actions undertaken in 2009 to secure it)
- Not compliant with current standards for radiation protection instrumentation (auto diagnostic, safety integrity level)
- Loss of expertise (personnel retirements, documentation not up to date)
- Very manpower intensive system

The availability and reliability of a radiation monitoring system for the PS and SPS complexes is of prime importance for the operation of LHC

ARCON operational risks

- Monitor failures → beam stop and spare monitor to be installed (worst case: from experimental areas): 2 to 4 hours
- Problem of supervision server, of MIL1553, no data and no alarm transmission
 → beam stop and repair of the related equipment: 1 day
- Failure of an entire ARCON system will result in the loss of radiation monitoring for a whole area → beam stop and replacement of ARCON: 1 to 3 days

Spare ARCON in DGS/RP-IL laboratory

RAMSES basics

- Compliant to applicable international standards for radiation protection instrumentation (ISO & IEC)
- ✓ IEC 61508 closely used as reference
 - Functional safety lifecycle
 - Project Management Plan
 - Hazard Analysis
 - Safety Integrity Levels assigned to safety functions
- ✓ A safety integrity level (SIL) 2 for radiation alarms and interlocks,
- Decentralised Radiation Monitoring system,
- ✓ Each detector-alarm unit operates autonomously, back-up with batteries (unit continues to operate even if rest of the RAMSES system fails)

RAMSES maintenance

Preventive maintenance:

- Systematic, regular control of operational reliability for each single equipment item (every 2 weeks to once a year)
- Performed by contractor and DGS-RP or DGS-IE

2009:

- ✓ Hardware and software updates have been implemented
- ✓ Annual maintenance completed

Corrective maintenance (CCC not yet involved):

- ✓ During working hours: performed by 1st intervention line (DGS/RP-IL)
- During non-working hours: RP on-call service and DGS/RP-IL on a best effort basis
- ✓ Contractor Hot Line (24H/24H, 7d/7d)
- ✓ Contractor 8 48 hours to solve problem on site

RAMSES

First statistics

✓ 3 false alarms in 2009 (1 hardware failure at LHC-3, 2 at CTF3 – cured by replacement of equipment)

✓ No false interlock signal in 2009

- ✓ 99 %* data availability in database
- ✓ No call of the hot line during non-working hours

* Present checking limit

How to prevent **potential stoppage** of CERN accelerators including LHC in the coming years due to ARCON unavailability ?

Ideal solution, financially and technically speaking:
 → Replace the ARCON by RAMSES = RAMSES II project
 Drawback: 4 - 5 years for implementation

Interim solution had to be found:

- → ARCON RAMSES Bridge project
- → RAMSES II Light project

Deliverable & status

ARCON-RAMSES Interface to replace MIL 1553 and HP Server

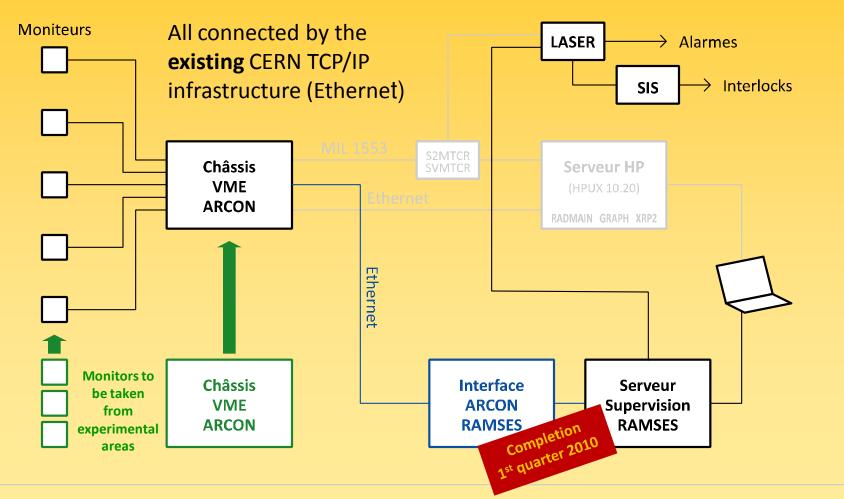
- ✓ Interface completed,
- ✓ Supervision part completed,

■ Final reception of the RAMSES based supervision system for all ARCON was scheduled for end 2009 → 1st quarter 2010 due to a technical problem identified with the OPC server software.

Improve availability of ARCON spare parts

- Stock of spare parts was replenished from old LEP ARCONS
- ✓ Spare parts are **tested** and **available**

Improve reliability of ARCON network link


✓ ARCON network star points are secured by UPS

Improve battery and power supply surveillance

✓ Installed on all ARCONs

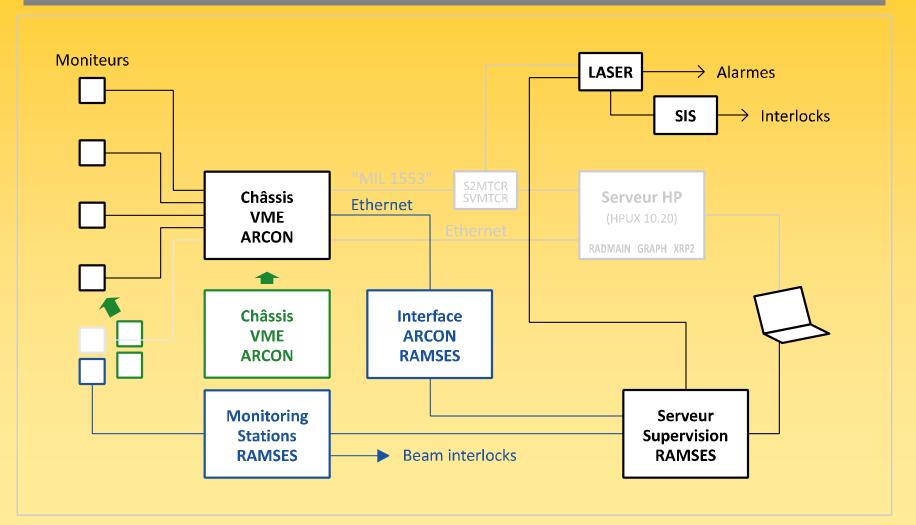
Overview

IEFC Workshop 11 February 2010

Monitoring systems for Radiation Protection

Deliverable and status

Replacement and consolidation of ARCON by RAMSES for the entire LHC injector chain


- ✓ Project includes ARCON monitors replacement, consolidation, new projects (LINAC4, HiRadMat) and spare parts
- ✓ Project passed Finance Committee in March 2009 (extension of the existing RAMSES contract)
- ✓ Contract amendment and related order were signed in December 2009

Two phases project – strongly depends on accessibility of areas during accelerators operation for cabling, civil engineering and network installation:

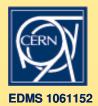
- Commissioning and acceptance tests of instrumentation in accessible areas → October 2010
- Full commissioning and acceptance tests by the end of 2010-2011 shutdown period, end of 2011 at the latest !

Overview

Due to financial restrictions, RAMSES II project divided into two parts:

- 1. RAMSES II Light, in the order of 3 MCHF (2010 2011), approved
- 2. RAMSES II, would amount to about 8 MCHF (2012 2016), not yet approved
- 3. RAMSES consolidation, from 2012 onwards...

Accelerators startup 2010

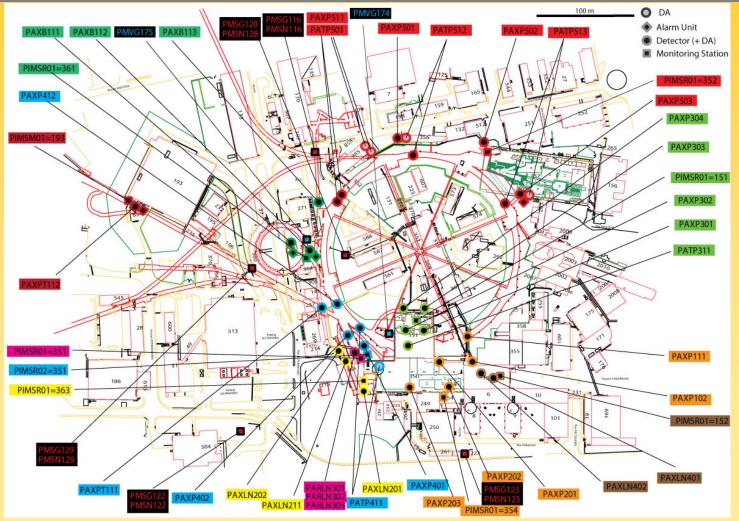

PS Complex and SPS

- Due to the pending final reception ARCON-RAMSES interface, the accelerator start-up in 2010 still relies on the <u>HP server based</u> <u>supervision</u> system until April:
 - Parallel operation of both systems for a certain period
 - ✓ Fade out of the HP server based supervision during the run 2010
- RAMSES II Light to be ready in 2011 (terms of the contract)

LHC, CNGS and CTF3

✓ RAMSES is operational for start-up with beam

Start-up of accelerators in 2010 with operational radiation monitoring system confirmed



Special thanks to the RAMSES team, DGS/RP-IL members, Doris Forkel-Wirth (DGS/RP), Markus Widorski (DGS/RP), Helmut Vincke (DGS/RP), Gustavo Segura (DGS/IE)

i.e. Instrumentation PS complex

IEFC Workshop 11 February 2010

Monitoring systems for Radiation Protection