
CMS
Database Strategy

moving from development to operation

Vincenzo Innocente
CERN PH/SFT

DataBases in CMS
• Relational Databases are pervasive in CMS

software applications
– Used as strategic and tactical storage in many

distributed application for logging, workflow
management, configuration management,
document storage etc

– Applications are rather independent of each other
• no central authority
• small development teams
• limited scope

– Notable exception: Condition Database

Offline RAC Usage

CONDITION DB DESIGN

Condition DB Structure

Relations in conditions

• All relations in conditions DB are purely logical
and application specific
– No RDBMS consistency enforced
– Full flexibility in copying (deep and shallow) at all

level of the structure
– Simple policy: NO DELETE, NO UPDATE

• Only the current IOV-Sequence can be extended

– Payloads implemented as POOL/ORA objects
– Management through application specific tools

POPULATION STRATEGY

Condition DataBase Population

• PopCon (Populator of Condition Objects tool):
– is an application package fully integrated in the overall CMS

framework intended to transfer, store, and retrieve condition data in
the Offline Databases;

– Assigns metadata information (tag and IOV).

• CMS relies on three ORACLE databases for the condition data.

ICCMSE 2009 Salvatore di Guida 8

OMDS
(Online Master Database

System)

ORCON
(Offline Reconstruction Condition

DB
Online System)

ORCOFF
(Offline Reconstruction Condition

Database Offline System)

PopCon

PopConCMS
Compact Muon

Solenoid

Centralized Population of Condition
Databases

• Two possibilities for each sub-detector:
– Run automatically the so-called O2O application that reads

from any online source, assigns tag and IOV and uploads
data in the dedicated ORCON account (condition data);

– Dropbox (calibration data): users copy data in SQLite
format into a dedicated folder, then these data are
automatically exported to the sub-detector’s ORCON
account.

• PopCon transfers data into the DB accounts:
– Creates log information stored in a DB account.

• Watchdog to monitor automatic jobs’ status:
– Monitoring information stored in the DB.

ICCMSE 2009 Salvatore di Guida 9

Web Monitoring from different users’
perspectives

ICCMSE 2009 Salvatore di Guida 10

The ORACLE DB
Administrator and
PopCon
Developer

The central CMS
detector
manager

The CMS sub-detector
manager

End - users

Personal reports, and the
trend of self-monitoring to
check the status of his
own jobs

Overview and full
report of sub-
detector to check
all transaction
done in a
dedicated account

Log Inspection for
deep scan, security
checks,
performance issues

Overview
and full
report for
all detectors’
subsystems

ACCESS STRATEGY

Data Access using web caches
(FronTier)

PHYSICAL LAYOUT

“Partitioning Strategy”
• Till now the database has been “partitioned” into

accounts following development and deployment
criteria
– Keep separated areas of independent development

• By sub-detectors, by software release

• Move to “partitioning” by use-cases
– Keep separated independent use-workflow

• MonteCarlo: copy all relevant data into a dedicated account
– Even a single sqlite file!

• Re-processing at remote Tiers: make a read-only snapshot of
the whole condition DB and use that (through FronTier)

• Prompt processing (reconstruction, calibration, analysis at T0
and CAF) keeps using the master DB (updated in real time)

Open issues

• As the Database grows and applications
evolve more “partitioning” issues will show up
– Manage “schema evolution”
– Use of oracle partitions
– Archive and pruning
– Snapshot frequency

• Add new “dimensions” and/or “abstractions”
at the application level

Summary

• CMS has in production a large number of
applications critically relying on DB backends

• Condition Database adds complexity challenges
due to its close connection to “physics”
applications

• Stable LHC operation will add new challenges and
new dimensions to the project
– Balance between development and production
– Performance issues
– Robustness and flexibility issues

