SPS Transverse Mode Coupling Instability with Space Charge

Adrian Oeftiger

CERN - HSC Section Meeting

5 March 2018

Motivation for Simulations

Transverse Mode Coupling Instability:

- found in SPS for Q26 optics, measured
 - \rightarrow intensity limit
 - \rightarrow mechanism and mitigation method using lower $Q_{x,y}$ (i.e. lower Q_s) developed over several theses
 - $\longrightarrow~$ Q20 optics threshold much higher than Q26, measured!
 - \implies even for higher brightness, TMCI exists and is a hard intensity limit!
- theory and simulation work by A. Burov, T. Zolkin and M. Blasciewicz predicted **vanishing TMCI limit** for strong space charge ("rigid slice model"), while D. Quatraro and G. Rumolo's simulations reported an only slightly **shifted TMCI limit**

 \triangle seeming contradiction between experiment and some simulations \rightarrow dependency on wake type found (Burov, Zolkin and Blasciewicz)

- recent theory work by Y. Alexahin includes incoherent tune spread ("soft slice model"), does not exhibit vanishing TMCI
- \implies self-consistent space charge simulations with PyHEADTAIL using Gaussian beams

parameter	value
intensity	$0 < N < 6 \times 10^{11}$
transverse tunes	$Q_{x,y} = (20.13, 20.18)$
synchrotron tune	$Q_s \approx 0.017$
chromaticity	$Q'_{x,y} = 0$
RF voltage	$V_{RF} = 5.75 \mathrm{MV}$
injection energy	26 GeV

- \longrightarrow single bunch, linear synchrotron motion
- \rightarrow no damper, no octupole currents
- → idealised broad-band resonator models (starting from circular axi-symmetric model)

Transverse Mode Coupling Instability

Without space charge, horizontal plane:

- \rightarrow modes 0 and -1 couple around $N = 2.6 \times 10^{11}$ ppb
- \rightarrow modes -2 and -3 couple around $N = 4 \times 10^{11} \text{ ppb}$

SPS TMCI at injection for Q20: Convergence scan in macro-particles (2.5D PIC space charge with adaptive grid)

Set-up

Set-up:

- smooth approximation, 200 space charge kicks along ring
- 1 impedance kick per turn with 500 slices
 - \rightarrow circular axi-symmetric broad-band (BB) resonator
- compare between low and high resolution
 - 32 vs. 500 (i.e. same like impedance) longitudinal number of transverse grids to solve free-space Poisson equation
 - correspondingly 1×10^6 vs. 15×10^6 macro particles
- simulate for 20000 turns

Convergence Scan

Low Resolution

High Resolution

Conclusion from Convergence Scan

Comparing low with high resolution:

- qualitative behaviour of macroscopic emittance and centroids look approximately the same (besides weird dips in low resolution)
- emittance growth and centroid impact take off from initial $\epsilon_{x,v} = 2.5 \text{ mm mrad}$ at different intensities!
 - \longrightarrow low resolution more unstable
 - significant horizontal centroid amplitude growth rates (including emittance growth!) start at
 - low resolution: $N_{th} = 2.5 \text{ ppb}$
 - high resolution: $N_{th} = 2.9 \text{ ppb}$
 - irregular centroid motion starts at
 - low resolution: $N_{th} = 2.1 \text{ ppb}$
 - high resolution: N_{th} = 2.9 ppb (same as above!)

show only high resolution on next slides...

Impact Horizontal on Vertical

→ horizontal growth impacts vertical plane first before vertical TMCI different initial space charge condition for vertical instability!

Rise times at $Q'_{xy} = 0$

- extract growth rate from first growth (before $\Delta \epsilon_{x,y} > 5\%$)
- \implies horizontal figures oppose "suppression of TMCI due to SC" hypothesis
 - vertical growth rates are imprint of horizontal TMCI
 - difficult to disentangle planes: don't trust vertical growth rates!
 - growth rates don't show clear structure of final $\epsilon_{x,y}$ (3 slides ago)
- \implies mode 0&-1 coupling seems to be gone :-) (N < 2.9 ppb stable!)

Constant Emittance Windows

Turns of simulation during which emittance growth remains below 5%:

Spectra (and Impact of Window)

 \implies before modes -2&-3 couple, dominant modes seem to be 1 and 2!

Spectra (and Impact of Window): no SC

 \implies without space charge, modes -2&-3 couple directly!

SPS TMCI at injection for Q20: Comparison of broad-band resonator models (no space charge!)

Context

Context of study:

- for a circular axi-symmetric broad-band (BB) resonator impedance model, the TMCI seem to hit earlier in the horizontal plane
 - $Q_X = 20.13 < 20.18 = Q_y$ for Q20 optics is the only asymmetry between transverse planes
 - → due to vertical TMCI observed in SPS experiments, we are interested in the vertical TMCI threshold from simulations
 - \longrightarrow without space charge there is no coupling
 - \implies in this case we can use full circular BB model and simply ignore the horizontal plane
- space charge couples the two transverse planes!
 - \longrightarrow need to remove horizontal TMCI in model to cleanly investigate the vertical plane options:
 - artificially remove horizontal impedance from circular axi-symmetric case by setting horizontal Yokoya factor to 0, or
 - use horizontal parallel plates BB model where horizontal symmetry eliminates horizontal TMCI (horizontal dip. and quadr. kick compensate each other)

Circular Broad-band Resonator

dip. X	dip. Y	quadrup. X	quadrup. Y
1	1	0	0

Circular Broad-band Resonator ONLY Vertical!

dip. X	dip. Y	quadrup. X	quadrup. Y
0	1	0	0

Parallel Horizontal Plates Broad-band Resonator

$\begin{array}{ c c c c c } + \frac{\pi^2}{24} & \frac{\pi^2}{12} & -\frac{\pi^2}{24} & \frac{\pi^2}{24} \end{array}$	dip. X	dip. Y	quadrup. X	quadrup. Y
	$+\frac{\pi^2}{24}$	$\frac{\pi^2}{12}$	$-\frac{\pi^2}{24}$	$\frac{\pi^2}{24}$

Conclusion from Resonator Model Study

Comparing broad-band resonator models:

- \rightarrow circular model with dip. horizontal kick removed (Yokoya $X_1 = 0$) seems better model to understand space charge impact:
 - no impact whatsoever on horizontal plane (as opposed to parallel plates)
 - \implies clean vertical set-up (although not strictly realistic)
 - vertical growth rates clearly show 2 features:
 - mode 0&-1 coupling around $N = 2.6 \times 10^{11}$ ppb (and subsequent decoupling)
 - 2 mode -2&-3 coupling above $N > 4.3 \times 10^{11}$ ppb
 - \implies large distance between 2 TMCI regimes might allow to follow both features unambiguously when space charge is included!

Circular BB Resonator: Equal Beta Functions

Circular BB Resonator: Equal Tunes

Q _x	Q_y	β_X	β_y	
20.18	20.18	54.5 m	54.5 m	
Table: optics parameters				

