The Lifetime Frontier:

Planet -

1-0

G. Watts (UW/Seattle)

G. Watts (UW/Seattle)

Outline

Long Lived Particles

Searching for Long Lived Particles at the LHC

Searching for Ultra Long Lived Particles

op -> charged Itags -> tan lepton hadrons Plan of talk Higgs sector in SM Long Lived gs sector - 2 doublets; MSSM Particles and top production & decays an decays Other experiments OF event topologies, briggers, backgrounds W- ly universality and tau detection 1988-89 Data & prospects

2012 We completed the Standard Model

The Standard Model

 $\begin{aligned} \chi &= -\frac{1}{4} F_{\mu\nu} F^{\mu\nu} \\ &+ i F D \mu + h.c. \\ &+ \chi_i y_{ij} \chi_j p + h.c. \\ &+ |D_{\mu} p|^2 - V(p) \end{aligned}$

223 SS 28 45

G. Watts (UW/Seattle)

H. P.B.

Dark Matter

Higgs Doublet

Axions

Hidden Sector Models

Grand Unified Theories

Super Symmetry

Extra Dimensions

String Theories

Little Higgs Model

Supergravity

WIMPS

MSSM

 $SU(3)^{3}$

No Evidence

Long Lived Particles

Almost every BSM theory accommodates them (some require them).

Some recent papers:

Mini split supersymmetry (arXiv:1212.6971) Gauge mediation (arXiv:hep-ph/9801271) RPV (R-parity violating) SUSY (arXiv:1309.5957) Models of Baryogenesis (arXiv:1409.6729) Hidden Valleys (arXiv:hep-ph/0605193) Dark Photons/Z (arXiv:1604.00044) Theories of Neutral Naturalness (arXiv:1512.05782) Models generating neutrino masses (arXiv:1604.06099) Exotic Decays of the Higgs Boson (arXiv:1312.4992)

Hidden Sector

A gauge group that does not interact via the SM gauge fields

- A phenomenology of arbitrary complexity
- Does interact via gravity (DM)

Hidden Valley

Some particles come back!

The Higgs as a Communicator

Detector Signatures

Detector Signatures

The mixing means the end result will be Standard Model Particles

Couples to leptons (M_X small)

"lepton-jets" – jets of leptons

Couples to heavy fermions (M_X larger)

Displaced Hadronic Jets f \bar{f} Analysis Strategy

Driven by the production and decay operators in the theory

Have We Covered Them All?

LLP Only Production

 $\phi \rightarrow \pi_v \pi_v$ Often produced in pairs

Hidden Valley Neutral Naturalness

Associated Production and Decay

LLP is produced in association, or the decay contains other objects

Jets – Colored Object Leptons – EW interactions Weak Bosons – Associated production etc. Pp M. Denick atal Phys Rev D24 (81) 1071 Fig 6, 19,18

6/2

10

XF

Notre Danne 81 Preedings p 476, Frig 4,3 also U.P. Sukhahme et al Phys Rev D25 (82) 2975 Notre Danne 81 p524 Frig 5 D. Zieminska et al

ud

VP

44

Inner Tracker green
 EM Calorimeter Blue/green
 Hadronic calorimeter Blue
 Muon system Grey

Displaced decay signatures

- 1. Decay in muon system jet
- 2. Two body decay (lepton jet)
- 3. Decay in HCAL to h-jet
- 4. Emerging jets
- 5. Inner Tracker decay EM jets
- 6. Decay to h-jets in the IT
- 7. Disappearing (invisible) LLP
- 8. Non-pointing $\gamma \rightarrow e^+e^-$
- 9. Decay in the ECal

Long Lived Particles

Long Lived Particles

Significant Detector Challenges:

A different strategy is required in each region

Signatures in a LHC-Like Detector

Decays in the Calorimeter

- 1. Look for the "appearance" of energy the Calorimeter
- 2. Little or no activity in the tracker

"CalRatio"

There are lots of differences in shape to take advantage of

- $\log_{10}(\frac{E_H}{E_{EM}})$
- Jet Width
- Longitudinal Length
- Jet p_T
- Lateral Width
- Shower Center (radial)
- ΔR to closest 2 GeV track
- Cluster Energy Density
- Number of Tracks with $p_T > 2 \text{ GeV}$
- Σp_T of all tracks
- Layer 1 HAD Energy Fraction
- Max track p_T

A 30% improvement in performance over straight cuts

The events must be written to tape...

Associated Production/Associated Decay

 e.g. WH production
 Trigger on isolated muon or missing E_T
 e.g. jets, missing E_T, etc.

 Signature Driven Trigger

ATLAS has 3 signature driven triggers running since the start of 2011:

- Trackless Jet Trigger
- CalRatio trigger
- Muon Rol Cluster Trigger

All triggers must be below 1 Hz!

CMS has made great use of more traditional triggers

- Muon triggers
- Jet triggers
- Signature Displaced Jet Trigger

Run 2 – Search for two LLP's in the calorimeter

The ABCD Method is used to estimate backgrounds

There are limits for 200 GeV and 400 GeV as well. 125 coming with next update.

A Few Other Results

2 Jet

Recent result that looks for 2 jets with displaced tracks

- Impact Parameter based tagging
- Multijet background
- Requires two Jets
- Most signal is RPV based

Background:

- Data based
- Start with events with smaller number of tags
- Extrapolate

This seems like an excellent analysis for "recasting"

RPV "Jet-Jet" model

Run 2 Search for Displaced Lepton-Jets

 $H \rightarrow f_{d_2} f_{d_2}, f_{d_2} \rightarrow \gamma_d H LSP$

- 3 Long Lived Final State Objects:
- Muons Only (type 0)
- Muons in a jet (type 1)
- Jet only (type 2)

The ABCD Method is used to determine the backgrounds.

Limit is also set for a 800 GeV scalar.

G. Watts (UW/Seattle)

CMS 4 Muon Lepton Jets

Run 2 Search for 4 muons in η < 2.4 In topology with two pairs of (closely spaced) muons γ_D is the LLP

CMS also has an interesting displaced $e\mu$ search...

G. Watts (UW/Seattle)

Run 1 Displaced Jet Search

 $\begin{array}{c} H \to XX \\ X \to q \,\overline{q} \end{array} \text{ (long lived, Higgs Portal)} \end{array}$

A Sta	TLAS Long-l atus: July 2015	lived Particl	e Se	arche	s* - 95% CL Exclusion		ATLA $\int (f dt - (18.4 - 20.3)) fb^{-1}$	S Preliminary
	Model	Signature	∫£ dt[fb	⁻¹]	Lifetime limit		$\int \mathcal{L} dt = (10.4 - 20.3)$ is	Reference
	$\operatorname{RPV}\chi_1^0 \to ee\nu/e\mu\nu/\mu\mu\nu$	displaced lepton pair	20.3	χ_1^0 lifetime	7-740 mm		$m(ilde{g})=1.3$ TeV, $m(\chi_1^0)=1.0$ TeV	1504.05162
SUSY	$\operatorname{GGM} \chi_1^0 \to Z \tilde{G}$	displaced vtx + jets	20.3	χ_1^0 lifetime	6-480 mm		$m(ilde{g})=1.1$ TeV, $m(\chi_1^0)=1.0$ TeV	1504.05162
	AMSB $pp \rightarrow \chi_1^{\pm} \chi_1^0, \chi_1^+ \chi_1^-$	disappearing track	20.3	χ_1^{\pm} lifetime	0.1	22-3.0 m	$m(\chi_1^{\pm})=$ 450 GeV	1310.3675
	AMSB $pp \rightarrow \chi_1^{\pm} \chi_1^0, \chi_1^+ \chi_1^-$	large pixel dE/dx	18.4	χ_1^{\pm} lifetime		1.31-9.0 m	$m(\chi_1^{\pm})=$ 450 GeV	1506.05332
	GMSB	non-pointing or delayed γ	20.3	χ_1^0 lifetime		0.08-5.4 m	SPS8 with $\Lambda=200~\text{TeV}$	1409.5542
	Stealth SUSY	2 ID/MS vertices	19.5	Ŝ lifetime			0.12-90.6 m $m(\tilde{g}) = 500 \text{ GeV}$	1504.03634
= 10%	Hidden Valley $H \rightarrow \pi_{\rm v} \pi_{\rm v}$	2 low-EMF trackless jets	20.3	π_v lifetime		0.41-7.57 m	$m(\pi_{ m v})=25~{ m GeV}$	1501.04020
	Hidden Valley $H \rightarrow \pi_{\rm v} \pi_{\rm v}$	2 ID/MS vertices	19.5	π_v lifetime		0.31-25.4 m	$m(\pi_{ m v})=25~{ m GeV}$	1504.03634
s BR	FRVZ $H \rightarrow 2\gamma_d + X$	2 <i>e</i> −, <i>μ</i> −, <i>π</i> −jets	20.3	γ_d lifetime	14-140 mm		$H ightarrow 2\gamma_d + X, \ m(\gamma_d) = 400 \ { m MeV}$	1409.0746
Higg.	FRVZ $H \rightarrow 4\gamma_d + X$	2 <i>e</i> -, μ-, π-jets	20.3	$\gamma_{\rm d}$ lifetime	15-260 mm		$H ightarrow 4\gamma_d + X, \ m(\gamma_d) = 400 \ { m MeV}$	1409.0746
5%	Hidden Valley $H \rightarrow \pi_{\rm v} \pi_{\rm v}$	2 low-EMF trackless jets	20.3	π_v lifetime		0.6-5.0 m	$m(\pi_{ m v})=25~{ m GeV}$	1501.04020
Higgs BR = 5	Hidden Valley $H \rightarrow \pi_v \pi_v$	2 ID/MS vertices	19.5	π_v lifetime		0.43-18.1 m	$m(\pi_{ m v})=25~{ m GeV}$	1504.03634
	FRVZ $H \rightarrow 4\gamma_d + X$	2 <i>e</i> -, μ-, π-jets	20.3	γ _d lifetime	28-160 mm		$H \rightarrow 4\gamma_d + X, \ m(\gamma_d) = 400 \text{ MeV}$	1409.0746
300 GeV scalar	Hidden Valley $\Phi \rightarrow \pi_v \pi_v$	2 low-EMF trackless jets	20.3	π_v lifetime		0.29-7.9 m	$\sigma \times BR = 1 \text{ pb, } m(\pi_v) = 50 \text{ GeV}$	1501.04020
	Hidden Valley $\Phi \rightarrow \pi_v \pi_v$	2 ID/MS vertices	19.5	π_v lifetime		0.19-31.9	$\sigma \times BR$ = 1 pb, $m(\pi_v) = 50$ GeV	1504.03634
900 GeV scalar	Hidden Valley $\Phi \rightarrow \pi_v \pi_v$	2 low-EMF trackless jets	20.3	π_v lifetime		0.15-4.1 m	$\sigma \times BR = 1 \text{ pb, } m(\pi_v) = 50 \text{ GeV}$	1501.04020
	Hidden Valley $\Phi \rightarrow \pi_v \pi_v$	2 ID/MS vertices	19.5	π_v lifetime		0.11-18.3 m	$\sigma imes BR$ = 1 pb, $m(\pi_{ m v}) = 50~{ m GeV}$	1504.03634
Other	HV $Z'(1 \text{ TeV}) \rightarrow q_v q_v$	2 ID/MS vertices	20.3	π_v lifetime		0.1-4.9 m	$\sigma \times BR = 1 \text{ pb, } m(\pi_v) = 50 \text{ GeV}$	1504.03634
	HV Z' (2 TeV) $ ightarrow q_{ m v} q_{ m v}$	2 ID/MS vertices	20.3	π_v lifetime		0.1-10.1 m	$\sigma \times BR = 1 \text{ pb, } m(\pi_v) = 50 \text{ GeV}$	1504.03634
				0.01	0.1 1	10	¹⁰⁰ cτ [m]	
			√s =	8 TeV				

*Only a selection of the available lifetime limits on new states is shown.

G. Watts (UW/Seattle)

Exotica Publications Long-Lived Particles					
144	EXO-16-044	Search for disappearing tracks as a signature of new long-lived particles in proton-proton collisions at $\sqrt{s}=$ 13 TeV	Submitted to JHEP	19 April 2018	
135	EXO-16-004	Search for decays of stopped exotic long-lived particles produced in proton-proton collisions at $\sqrt{s}=$ 13 TeV	Accepted by JHEP	31 December 2017	
132	EXO-16-003	Search for new long-lived particles at $\sqrt{s}=$ 13 TeV	PLB 780 (2018) 432	25 November 2017	
110	EXO-15-010	Search for long-lived charged particles in proton-proton collisions at $\sqrt{s}=$ 13 TeV	PRD 94 (2016) 112004	27 September 2016	
87	EXO-13-006	Constraints on the pMSSM, AMSB model and on other models from the search for long-lived charged particles in proton-proton collisions at \sqrt{s} = 8 TeV	EPJC 75 (2015) 325	9 February 2015	
85	EXO-12-036	Search for decays of stopped long-lived particles produced in proton-proton collisions at \sqrt{s} = 8 TeV	EPJC 75 (2015) 151	22 January 2015	
81	EXO-12-037	Search for long-lived particles that decay into final states containing two electrons or two muons in proton-proton collisions at \sqrt{s} = 8 TeV	PRD 91 (2015) 052012	25 November 2014	
80	EXO-12-038	Search for long-lived neutral particles decaying to quark-antiquark pairs in proton-proton collisions at \sqrt{s} = 8 TeV	PRD 91 (2015) 012007	25 November 2014	
79	EXO-12-034	Search for disappearing tracks in proton-proton collisions at \sqrt{s} = 8 TeV	JHEP 01 (2015) 096	21 November 2014	

Both experiments now have an excellent arsenal of tools with which to search for LLP's

And Beyond

LLP + other Objects LLP's from different detectors Ultra Long Lived Particles

Better Identification Of LLP's

- Improved BDT to identify LLP
- Could we do image recognition in calorimeter?

• Vertexing in the Calorimeter!

Expanding Final States

The current strategy works only for a two (or more) displaced vertices.

• In a single detector

LLP + Object

Use ABCD method to calculate backgrounds

- Iso/Non-Iso: Displaced object with nothing else near it
- The uncorrelated Y variable will depend on the analysis
 - Missing E_T , jet p_T , etc.

G. Watts (UW/Seattle)

The backgrounds are too large with a single LLP Look for a second object in the event!

arXiv:1605.02742

Plenty more work to do with other signatures!

What about life-time sensitivity?

Lifetime is a free parameter...

But it is constrained by Big Bang Nucleosyntheses $-c au{\sim}10^7$ m

ATLAS/CMS Detectors can only see to $c au{\sim}100$ m

Escaped Particles become missing E_T ...

Acceptance isn't great Can't tell if they are stable or large $c\tau$...

Increasing The Base Line

Minimizing the Background

- Scintillator for 1.5 ns timing resolution
- RPC layers for track reconstruction (and vertex finding)

Resistive Plate Chambers (RPCs) have great timing resolution as well

The LLP must decay within the Decay Volume (Air)

Vetoing Backgrounds

Cosmic Muons

- Precision timing from scintillators & RPC's
- Tracking from RPC's
- May also be some interesting physics

Upward going LHC Muons

- Precision timing from scintillators
- Bottom of Decay Volume veto

Upward going cosmic neutrinos

- Irreducible?
- Rate expected to be very low

Test Stand

Do these rejection techniques work?

- Scintillator from DZERO end-station muon chambers (thank you D. Denisov!)
- RPC's from Rome (Argo experiment)

Ran in November, being set up again at ATLAS P1

- Great Learning Platform for Graduate Students!
- Timing in portions of the detector
- Learning how finicky RPC's can be

G. Watts (UW/Seattle)

Detecting Ultra-Long-Lived Particles: The MATHUSLA Physics Case

Editors:

David Curtin¹, Matthew McCullough², Patrick Meade³, Michele Papucci⁴, Jessie Shelton⁵

1 Foreword				
2 Introduction				
3 Summary of MATHUSLA Experiment				
4 Letters of Support				
5 Theory Motivation for Ultra-Long Lived Particles .				
5.1 Naturalness				
5.1.1 Supersymmetry				
5.1.1.1 RPV SUSY				
5.1.1.2 Gauge Mediation				
5.1.1.3 Mini-Split SUSY				
5.1.1.4 Stealth SUSY				
5.1.2 Neutral Naturalness				
5.1.3 Composite Higgs				
5.2 Dark Matter				
5.2.1 Asymmetric Dark Matter				
5.2.2 Dynamical Dark Matter				
5.2.3 Freeze-In Scenarios				
5.2.4 Freeze-out-and-decay Scenarios				
5.2.5 SIMPs and ELDERs				
5.2.6 Decoupled Hidden Sectors				
5.2.7 Coannihilation				

5.3	Baryogenesis
5.3.1	WIMPy Baryogenesis
5.3.2	Leptogenesis
5.4	Neutrinos
5.5	Bottom-Up Considerations
5.5.1	Hidden Valleys
5.5.2	Exotic Higgs Decays
5.5.3	DM and mono- X searches .
5.5.4	SM + V: Dark Photons
5.5.5	SM + S: Singlet Extensions .
6	Signatures
7	Possible Extensions
8	Conclusions

Goal is to have comprehensive document finished by end of 2018

Contributions from broad spectrum of theory community

FASER

- Forward cylindrical detector in ATLAS tunnel with 0.1 Tesla field
- Advantage large forward pp cross sections for light particles decaying to lepton
- Original concept considered three locations: near and far on axis and off axis

SLAC Seminar UW 13 February 2018

CODEX-b

- Instrument current LHC-b DAQ space ~ 1000 m³
 - Part of LHC-b detector
 - Physics goals similar to MATHUSLA
- Requires more shielding
- LHC-b luminosity lower than pp CMS /ATLAS
- Has some attractive features

CODEX-b

$$B \to X_s \varphi$$

Physics Beyond Colliders

- PBC (Physics Beyond Colliders) at CERN study group to evaluate proposals for detectors to go beyond current LHC detectors
 - report expected by end of 2018
 - http://pbc.web.cern.ch/
- Charge is to evaluate various new proposals
 - SHIP 400 GeV beam dump weakly coupled particles in the few GeV mass range
 - FASER (1708.09389) proton inelastic scattering in HL-LHC collisions to produce light LLPs (dark photons)
 - CODEX-b (1708.09395) physics goal similar to MATHUSLA
 - MATHUSLA
 - MilliQan (1410.6816 Haas, Hill, Izaguirre, Yavin, 1506.04760 Izaguirre, Yavin, Letter of Intent: 1607.04669) Search for milli-charged particles at Point-5 (CMS)

Conclusions

- The LHC has completed a fairly comprehensive set of searches for long lived particles decaying to jets!
 - SUSY searches not discussed here!
- Substantial parts of phase space for exotic Higgs decays have been ruled out
 - As well as heavier mass scalar decays
- A lot of room for improvement in Run 2
 - Combined analyses, better results for theorists
 - Include other objects besides displaced vertices
 - A huge amount of work already done... just not public. ☺
- ULLP Searches
 - MATHUSLA detector, test stand
 - Initial collaboration of 5 or 6 institutions formed (and growing)

Thanks!

And the LHC!

And to ATLAS