Study of Inelastic Beam Gas for FCCee (mostly for FCCee Z 45.6GeV/beam in this presentation)

O. BLANCO, M. BOSCOLO, H. BURKHARDT F. COLLAMATI, M. LUCKHOF

FCCee MDI Meeting \#15
2018/March/06

First results of Inelastic Beam-gas scattering for the Z run with latest optics
Monte Carlo particle tracking simulation is performed using the MDISIM tool
\rightarrow Loss map and loss rates are obtained.

Results will be shown for:

1) arc only at the Z to compare with analitical results Gas of H2 and N2 has been considered for now.
2) IR at Z, H, W. I show plots for the Z Gas of N2 has been considered for now.

- Note that SR is not considered in the simulation.

Z 45.6GeV/beam arc

FCCee arc Z 45.6GeV/beam

Lattice : FCCee_z_213_nosol_4.seq (ZOOM)

Constant aperture : 35mm

FCCee Z geometry scalexy 50 :

(scalexy 1 is not displayed correctly, but IS used for the tracking studies)
Tracking starts at 2000 m and ends at $3200 \mathrm{~m}=1200 \mathrm{~m}$ in total

WHAT IS THE PARTICLE LOSS RATE IN THE ARC?

At 45.6GeV/beam: Npart =1.7e11 Nbunches $=16640$

With an energy acc. of 2% and pressure of $10^{-9} \mathrm{mbar}$

Scattering Rate $/ \mathrm{m} /$ beam	
Expected	Simulation
6.7 KHz	6.2 KHz
192.3 KHz	189.1 KHz

As reference $\tau=100 \mathrm{~h} \rightarrow$ Scattering Rate $=78.6 \mathrm{Khz} / \mathrm{m} /$ beam
Beam gas particles generated in the arc are lost very soon, in the arc dipoles $100 \mathrm{~m} \sim 200 \mathrm{~m}$ after interaction

XExit:ZExit \{ZBG<3000\}

ZBG:ZExit $\{Z B G<3000\}$

ENERGY EXCHANGE BETWEEN e- and gas ?
EneBG $\{Z B G<3000\}$
Energy loss In the Beam Gas event :

EneBG $\{Z B G<3000\}$
Particles loosing less Than 0.95 GeV continue In the beam

Energy acceptance 0.95 GeV , i.e.
$0.95 / 45.6=2.1 \%$

LOCATION OF PARTICLE LOSS?

Particle distribution
Along Z :
Somehow uniform distribution of the particle loss
ZExit $\{Z B G<3000\}$

Z 45.6GeV/beam MDI Region
at all energies the scattering distribution is similar, BUT, rate differs

FCCee Z 45.6GeV/beam

Lattice : FCCee_z_213_nosol_18.seq (ZOOM)

We consider to study from $s=-830 m$ to $s=370 m$

Conical Tapers from Kersevan. IR Vacuum Concept. Workshop on the Mechanical optimisation of the FCC-ee MDI https://indico.cern.ch/event/694811/timetable/

The details between QC1's have been ignored for the moment

Bonus slides (following yesterday's discussions):
Shape and dimensions (in mm) of IP chambers:

CAD model is based on the M. Sullivan design (FCC 2017, May 2017)

FCCee Z geometry scalexy 50 :

(scalexy 1 is not displayed correctly, but IS used for the tracking studies)
Tracking starts at -830 m and ends at $370 \mathrm{~m}=1200 \mathrm{~m}$ in total

Z "loss map"

Z "loss map" - ZOOM around IP

Particles hitting near the IP region, AREA 2, come from -600 m upstream. The other regions show beam gas events that produce an immediate particle loss.

ENERGY OF THE LOST PARTICLES

Energy lost by the primary particle in the interaction with the gas molecule that led to particle loss
Energy of the particles that get lost due to BG when hitting the pipe

DIRECTION OF THE LOST PARTICLES

Tracks exiting the pipe

- Where are lost particles directed? -

RATES FOR OTHER ENERGIES

Although, the rate is largely non-uniformly distributed along the MDI region, We show the equivalent scattering rates per energy with N2
Scat. Rates $[\mathrm{KHz} / \mathrm{m} /$ beam $]$ Beam Current [mA]
138
1390
14.5
147
$\begin{array}{lll}\mathrm{H} & 2.8 & 29\end{array}$

Z
W

The lattice version 213 is not available for the t-pole.

CONCLUSIONS

MDISIM allows to get a detailed Loss Map and Loss Rate in the MDI region. For the arc the obtained loss rates are consistent with expectation from analytical formulas.

The geometry in the IR has been approximated with cilinders, and seems good enough for the moment.

A loss rate of $138 \mathrm{Khz} / \mathrm{m} /$ beam is found at The Z -pole with N 2 at $10^{-9} \mathrm{mbar}$, Losses are concentrated in the conical tapers.

The study of other energies is on-going, and points out to the similar loss map with lower rates, IR losses originate $\sim 600 \mathrm{~m}$ upstream.

Loss map particles can be tracked in all the sub-detectors, and eventually, if dangerous, remedies could be considered.

BACK UP

Lattices available in afs is X
Initial studies have been done with the ones marked with X Latest lattice 213 for the t is now available

All these plots and numbers are available for all these optics/energies

Z (Euclidean) is NOT equal to S ($C-S$ coordinates) ZBG is the location along Z where a Beam Gas Interaction occurs.

It looks pretty flat up to 3000 m , I cut at 3000 m For $\mathrm{N}: 113812 / 1 \mathrm{e} 7=1.13 \%$ are lost in 1 km

WHAT IS THE LOSS RATE FROM BEAM GAS IN THE ARC?

As calculated by Francesco :
Neloss = NelossMC/NeprimMC . Nebunch . Nbunches . Preal/Pmc
For H the rate is 2.35 MHz per km of arc at $10^{-9} \mathrm{mbar}$
Neloss = 68724/1e7 . 1.7e11 . 16640.1e-9/24.8

$$
=0.783 \mathrm{e} 3
$$

Rate_eloss $=$ Neloss/Trev $=18.1 \mathrm{e} 3 / 0.333 \mathrm{~ms}=2.35 \mathrm{Mhz}$
For H 2 the rate is 6.22 MHz per km of arc at $10-9 \mathrm{mbar}$
Neloss = 90764/1e7 . 1.7e11 . 16640 . 1e-9/12.4
= 2.070e3

Rate_eloss $=$ Neloss $/ T r e v=18.1 \mathrm{e} 3 / 0.333 \mathrm{~ms}=6.22 \mathrm{Mhz}$
For N the rate is 54.3 MHz per km of arc at $10^{-9} \mathrm{mbar}$
Neloss = 113812/1e7 . 1.7e11 . 16640 . 1e-9/1.78

$$
=18.1 \mathrm{e} 3
$$

Rate_eloss $=$ Neloss/Trev $=18.1 \mathrm{e} 3 / 0.333 \mathrm{~ms}=54.3 \mathrm{MHz}$
For N2 the rate is 189.1 MHz per km of arc at $10^{-9}-\mathrm{mbar}$
Neloss = 99034/1e7.1.7e11. 16640.1e-9/0.445

$$
=62.95 \mathrm{e} 3
$$

Rate_eloss $=$ Neloss $/ T r e v=63.0 \mathrm{e} 3 / 0.333 \mathrm{~ms}=189.1 \mathrm{MHz}$

THE PARTICLE LOSS IS NOT UNIFORMLY DISTRIBUTED

Cumulative distribution of losses

