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Motivation

ALICE

e Secondary discharges appear shortly after primary discharges

* Large signal can be associated with a development of a spark
between GEM and GEM/padplane

e See previous talks for physics introduction
 May be violent and harmful to hardware and electronics

-> Avoid or mitigate secondary discharges
-> Optimise HV scheme



HV Powersupply

Upgraded ALICE TPC HV Scheme %

ALICE

37 line HV cable: ~80m
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Optimising HV Scheme

Rrop

GEM

RBOT

ALICE
RC Elements in ALICE GEMs:

* Decoupling resistors Rgor /Riop (1 per GEM

side and HV cable)
- Decouple HV supply line from a GEM electrode
V - Current choice: 100 kQ; acceptable potential
Top drop

Parasitic Capacitance due to cables between
- Power supply and decouplingresistors
- GEM and decouplingresistors

* Loading resistors R, (at top side)
- Quenching sparks, reduce current, protect
GEM segment
- Reduce current flowing from the PS in case of
a short
- Voltage (thus gain) drop due to the
(ion/electron) current
- Final choice5 MQ (for GEM1/2/3/4)



Experimental Setup %

Cathode%
GEM lj

Source II
Ep
__________________________________ 3
Emp 2.0 mm .
PC Scope Attenuator

ALICE

Mixed a-source (Pu, Am, Cm) shooting
through 7 mm holein the cathode
Rate ~550 Hz

Eprier = 400 V/cm (ALICE drift field value)
E,np Variable

Readout signals at the anode 34 dB attenuator
and a scope

Operatedin Ar-CO, (90-10) and Ne-CO,-N, (90-10-5)
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Parasitic Measurements in Ar-CO, (90-10)
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* Propagation probability does not depend
on the loading resistor value

* Nominal value R =5 MQ




Secondary discharge probability
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Parasitic Measurements in Ar-CO, (90-10)
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* Extra capacitance (e.g. cable) between the top
loading resistor and the top GEM electrode
may influence the propagation behavior

» Effect of an extra energy reservoir causes
increase of GEM bottom voltage

=> Loading resistors soldered directly at GEM foil



Secondary discharge probability

Parasitic Measurements in Ar-CO, (90-10)

ALICE
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* Onset of propagation observed at higher

Reot E,np for larger Rgor
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Secondary discharge probability

Parasitic Measurements in Ar-CO, (90-10)
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Cables introduce parasitic capacitance

Propagation probability increases with length of cable
between R;yrand GEM

Effect of stored energy

Necessary to install decoupling resistors close to
chambers (clear preference Rzo7r & Rop = 100 kQ)



1 Ar-CO, (90-10)
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* Effect of decoupling resistor (Rggr = 200kQ, R, =5 MQ)

* Cable length (between the PS and Ryo1/R1op) dO€S not
influence the propagation probability

Y Rgordecouples long cables well

10



Onset field [V/cm]

Secondary discharge probability
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Measurements in Ne-CO,-N, (90-10-5)
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Propagation curve measured in future ALICE TPC gas
mixture

80 m cable from the power supply to simulate realistic
conditions

1.5 m between Ryzorand GEM bottom

Clear dependence on Ry value
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Secondary discharge probability

Secondary discharge probability

Measurements in Ne-CO,-N, (90-10-5)
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Summary |

RC components clearly have a major influence on discharge propagation
Solder R, directly to GEM

Choose high value of the decoupling resistance: Rg5r = 100 kQ
— Value of the resistor can be adjusted until final installation but also during the TPC operation

HV settings with lower fields preferable
Minimize cable length between the Ry and GEM (~2 m)



Application to 4-GEM Setup %

ALICE

e So far all systematic measurements with 1-GEM setup
* Now: Application of “propagation-hardened” HV scheme on
Raeo— Varo 4-GEM Setup
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Application to 4-GEM Setup &

0" ALICE
r OPropagton . dec-20K
‘:E;' SEZ:Z?”;EJ“’E‘;ZL?:O::OOK * GEM 4 studies show that optimized HV scheme works as
g 0.15 } } T intended, no propagations to the readout plane
>
}:: 0.1 ; i ;  However secondary discharges (in transfer gaps) still
= - % % observed when primary discharge triggered in GEM 1/2/3

o _ * Proper trip limits and 100 kQ secure GEMs (no GEM was
02.8 S 3‘5 o 3‘:1 < I3\.’6I - '3‘_’8' - '4 broken when Ry > 0)
E,np (kV/cm)

* Further stabilisation by:

- Reduction of transfer/induction fields (performance
deterioration, higher AV, necessary to
compensate gain)

- Increase Ryoy value for GEM 1/2/3 (200-500 kQ)
(gain drop is not an issue as the highest
amplification occurs in GEM 4)
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Summary |l

 GEM 4 safe, propagation still visible in GEM 1/2/3
— Solutions: higher Ry, lower Ep (but lower E,, necessitates higher AVgy)
 Due to our rule set no GEMs were harmed during these studies

Next up:
 Measure multi-GEM propagation with final power supply and full-size IROC



