Discharge protection of CMOS pixel chips in Micromegas MPGDs

Nikhef
MESA+
University of Bonn
IZM-Berlin Fraunhofer
CEA- Saclay
Neuchatel EPFL-LMTS

Re-presented by Harry van der Graaf

RD 51 MPGD Stability Workshop, Munich Munich, June 21, 2018

1995

- High field created by Gas Gain Grids
- Most popular: GEM & Micromegas

2D detector

April 2004 Micromegas + MediPix 2 NIKHEF/Saclay/Univ. Twente

enough gas gain to see individual electrons: MIP tracking

A second

mm nnn 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1411

4 mm

Black and White

δ-ray!

MIPS

14.11=

13.00-

12.00-

11.00-

6.00-

4.00-

3.00-

2.00-

Paul Colas, Yannis Giomataris

2006 - 2007

Wafer post-processing: InGrid

InGrid: an Integrated Grid on Si (wafers or chips)

- perfect alignment of grid holes and pixel pads
- small pillars Ø, hidden pillars, full pixel area coverage
- Sub-micron precision: homogeneity
- Monolithic readout device: integrated electron amplifier

Max Chefdeville, Victor Blanco Carballo

Discharge (spark) protection

2006-2007 dead chips everywhere 2007-2008 spark protection and Ingrid 2008-2009 characterizing performance of GridPix

Apply principle of Resistive Plate Chamber (RPC): quench discharge before completion by covering the chip with a high-resistivity protection layer

Pierre Jarron: pioneered H-Si layer on Medipix as direct X-ray convertor

Nicolas Wyrsch: (IMT Neuchatel, now EPFL-Neuchatel): Solar panel studies using (low cost) H-Si layer on glass/foil substrate

- 1) Quenching: surface charge reduces E-field in plasma area
- 2) Protection of pixel chip surface area against hot plasma

This is NOT related to charge spreading (enabling interpolation of digital charge info)

pixel or strip anode

Normal (avalanche signal): induced charge almost equal to avalanche (electron) charge as long as layer thickness is small with respect to pixel input pad diameter. True for Medipix and TimePix -1

TimePix 3 has 10 micron diameter input pads: some signal loss.

Specific resisitivity ρ of SiProt

Virtual time constant τ of layer-on-conducting substrate:

Assuming equipotential at layer top surface

capacitor:
$$C = A\epsilon_0 k/D$$
 resitivity: $R = \rho D/A$, so $\tau = RC = \rho \epsilon_0 k$

Time constant associated with discharges (streamers) pico-seconds:sets lower limit on ρ. Normal signal current reduces potential of upper layer surface: sets upper limit Resistance between two input pads must be high enough (avoiding input noise). Sets upper limit.

... discharges are observed!

initiated by 2.5 MeV alpha's from Thorium/Radon in gas

For the 1st time: image of discharges are being recorded

Round-shaped pattern of some 100 overflow pixels

Perturbations in the concerned column pixels

- Threshold
- Power

Chip keeps working

2007 Protection layer of amorphous silicon

Nicolas Wyrsch

$$3 SiH_4 + 4 NH_3 \rightarrow Si_3N_4 + 12 H_2$$

- Silicon Nitride is often applied as passivation layer: top finish of chips.
- With overdose of SiH₄:conductivity: high resistivity bulk material
- Favored material for bearings in turbo chargers, jet engines

Discharge (protection) studies: Martin Fransen

Improvement with Si Nitride

Full post-processing of a TimePix

Timepix chip + SiProt + Ingrid:

MESA+

IMT Neuchatel

Fig 6. SEM images of a cut-open GridPix chips, clearly showing the SiNitride protection layer on top of the chip, of which its metal layers are well visible. A fault in the form of a cavity is identified and indicated.

Fig 7. The pixel input pads of the TimePix 1 chip cause a well-known irrigularity acting as seed for a cavity (defect) in a protection layer to be deposit. Left: edge variation seeds cavity, right: no problem

MEMS Technology

- May 2010: 18 pcs GridPix (= TimePix + SiNProt + InGrid) made- quite good sparkproof!
- weak spots in protection layer found: future: all ceramic InGrid

2007: GridPix with functioning protection layer the ultimate TPC detector:

- single electron sensitive
- extract ALL info of primary electrons in gas
- only gas diffusion limits TPC performance
- (and pixe Isize)

2007 – 2016:

- attempt GridPix mass production on wafers: wafer post processing (InGrid)
- 2. Improve protection layer: no faults permitted

GridPix production at IZM-Berlin

Wafer-based Production Fraunhofer

ΙΖΝ

Production at Twente was based on 1 - 9 chips process. New production set up at the Fraunhofer Institut IZM at Berlin. This process is wafer-based \rightarrow 1 wafer (107 chips) is processed at a time.

- 1. Formation of Si_xN_v protection layer
- 2. Deposition of SU-8
- 3. Pillar structure formation
- 4. Formation of Al grid
- 5. Dicing of Wafer
- 6. Development of SU-8

SEM Pictures Fraunhofer

Some results of IZM-3: ⁵⁵Fe energy spectra

Voltage on grid 350 V (gain: 5500) G02-W0056 pixels: $\sigma_N/N = 5.6\%$

charge: $\sigma_Q/Q = 7.2\%$

F02-W0056 pixels: $\sigma_{N}/N = 6.1\%$

charge: $\sigma_0/Q = 7.2\%$

H04-W0056 pixels: $\sigma_{N}/N = 8.3\%$

charge: $\sigma_Q/Q = 11.2\%$

New R&D: the all-ceramic GridPix:

- Si TimePix chip
- SiNitride protection layer
- SiNitride InGrid
 - → common thermal expansion coefficient: 6 x 10⁻⁶ K⁻¹

First GEMGrid with SiO2 as insulating spacer between grid and substrate Victor Blanco Carballo, MESA+/Nikhef

The All-Ceramic GridPix Why Ceramic?

- Outgassing of the SU-8 pillars
- Application in cold (cryogenic) environments DBD, DarkMatter

Material	Coefficient of thermal expansion (10 ⁻⁶ /ºC)
Silicon	2.6
Silicon Nitride	3.2
Silicon Oxide	2.3
Aluminum	22
SU-8	102

Double Spark protection (like a RPC)

25 21 June 2018

Figure 1 All-Ceramic InGrid

Development of All-Ceramic InGrid in progress at IZM-Berlin Fraunhofer and EKL/Delft University of Technology Hong Wah Chan & Yevgen Bilevych

The GridPix Quad General Purpose readout unit

- A GridPix/TimePix-3 is the best possible readout of TPCs, providing full 3D info of all individual primary electrons
- one unit includes 4 TimePix-3-based InGrids
- units can be placed against one another, forming an arbitrarely large TPC readout area
- Spidre readout: 2.2 Gb/s hit pixel data (no frame readout!)
- Version 1.0 operational: version 2.0 awaits new badge of IZM TPX-3/InGrids
- Production ASI/Nikhef/Bonn may become true in 2019

