Scintillation light readout of Micromegas detector

F.J. Iguaz

RD51 collaboration meeting, Munich, 19th June 2018

F.M. Brunbauer

- B. Mehl
- R. De Oliveira
- E. Oliveri
- O. Pizzirusso
- L. Ropelewski

IFTU - CEA Saclay Institut de recherche sur les lois fondamentales de l'Univers

- D. Desforge
- E. Ferrer-Ribas
- F.J. Iguaz
- T. Papaevangelou
- L. Pollacco
- L. Segui

Glass Micromegas

Glass Micromegas

Energy resolution:

- **13.5% FWHM** at 5.9 keV.
- 15% FWHM (bulk).
- 11% FWHM (microbulk).
- Interest for bulk technology.
- Other developments:
 - Thin-mesh, β-mesh
 - Ceramic readout.

Optically readout detector:

- Scintillation light.
- Light yield & spectrum.
- X-ray radiography.
- GEMs used since: Fraga et al.
 NIMA 471 (2001) 125-130.
- First time with Micromegas?
- Potential better energy & spatial resolution.

Optically readout detector

ADVANTAGES:

- Intuitive pixelated readout with **megapixel imaging sensors**.
- High **spatial resolution**.
- Integrated imaging approach.
- Lenses and mirrors to enable adjustable magnification and camera location.

DISADVANTAGES:

- Limited frame rate.
- Radiation hardness of imaging sensors.
- Need of CF4-based gas mixtures or wavelength shifters.

Recording scintillation light with imaging sensors

More info tomorrow at 10h at F.M. Brunbauer's presentation.

Glass Micromegas

Glass Micromegas readout

Glass surface (1.1 mm) + Indium Tin Oxide (ITO) layer.

Anode resistivity depends on the layer thickness:

- 25 nm -> 100 Ω/□
- 450 nm -> 4 Ω/□

Glass Micromegas

F.J. Iguaz, RD51, 19th June 2018

Glass Micromegas detectors

#	Samples	Area (cm ²)	Base	Thick	Mesh type	
1	2	3 x 3	Glass+Cr	3 mm	Woven-1 & β-mesh	
2	4	2.5 x 2.5	ITO	1.1 mm	β-mesh	
3	2	6 x 6	ITO	1.1 mm	Woven-2	

Glass Micromegas

Woven mesh vs β-mesh

Туре	Pattern	Gap	Wire thick	Pitch	Hole pitch
Woven-1	Squared	128 µm	21 µm	65 µm	42 µm
β-mesh	Hexagonal	128 µm	23 µm	69 µm	46 µm
Woven-2	Squared	128 µm	18.5 μm	62.5 μm	44 µm

Glass Micromegas

Number of

800

600

400

200

0^L 0

50

100

MCA channel

100

150

Res (FWHM) = 13.20 + 0.12

50

Ne+10%iso, A = 500 V

200

MCA channel

150

250

300

350

400

Res (FWHM) = 11.85 + 0.12

Gases: Ar+5%iso & Ne+10%iso at 1 bar, 5 l/h flow.

200

Energy spectra fitted to two gaussians: 5.9 & 6.4 keV x-rays.

250

Energy resolution of the 5.9 keV line expressed in % FWHM.

500

Gain curves in Ar+5%iso

Energy resolution in Ar+5%iso

Results in Ne+10%iso Red: Ar+5%iso

24 Blue: Ne+10%iso Energy resolution at 5.9 keV (% FWHM) 10⁶ 22 10^{5} 20 Absolute gain 10^{4} 18 10^{3} 16 10² ^{__} 22 24 26 28 30 32 34 36 38 40 14 42 Amplification field (kV/cm) 12 **Energy resolution:** Ar: 13.4% FWHM. 10 10³ 10⁵ 10⁶ 10² 10⁴ Ne: 12.0% FWHM Gain

Optical read out MM-based detector

Glass Micromegas

Glass Micromegas

Optical read out MM-based detector

Setup:

- Micromegas (500-600 V)
- Micromegas (530-580 V) + 1 GEM (@400, G = 100)

Preliminary results:

- Scintillation light spectrum compatible with GEM one.
- High resolution images with x-ray radiography.
- Single x-ray photon events observed.
- Energy resolution: <u>20-25% FWHM</u> at 5.9 keV.

Under investigation:

- Iron spectrum only observed if source was collimated.
- Better energy resolution when GEM was on!

Scintillation light spectrum

- Recorded by a UV-VIS spectrometer coupled to a collimating lens.
- MM at 560 V (2 μA) in x-ray generator.
- Similar to GEM.
 - No UV emission band due to glass or ITO absorption.

X-ray radiography

Background substracted

Flat-field corrected

- Images acquired by averaging several 10s exposure times.
- Beam profile shape removed by dividing by "white" image.
- High resolution images are obtained.

Glass Micromegas

- CEA Saclay

CERN

Energy resolution in Ar+20%CF₄

Energy resolution in Ar+20%CF₄

Summary

Energy resolution:

- Glass (bulk) MM show better performance than standard bulk:
 - Maximum gain: <u>3-5 x 10⁴</u> (Argon), <u>10⁵</u> (Neon).
 - Energy resolution: 13.4% FWM (Argon), 12.0% FWM (Neon).
- No clear difference between woven-meshes or β-mesh.

Optical TPC:

- Scintillation light spectrum compatible with GEM one.
- High resolution images with x-ray radiography.
- Single x-ray photon events observed.
- Energy resolution: <u>20-25% FWHM</u> at 5.9 keV.

Summary

Next steps:

- Spatial resolution with a linear pair pattern & a MTF pattern.
- Remeasurement of light yield.
- Iron spectrum with short exposure images.
- Radon track images.
- Other possible improvements: thinner drift gap, helium gas.

Back-up slides

Detector characterization

- Gases: Ar+5%iso & Ne+10%iso at 1 bar, 5 l/h flow.
- Arnaud's test chamber, ⁵⁵Fe source situated outside.
- Drift gap: ~10 mm.
- Large range of anode & drift scanned voltages.

PMT pulses in Ar+20%CF₄

Only Micromegas Cathode = 150 V

Anode = 570 V

MM + GEM

Cathode = 150 V

GEM = 400 V

Anode = 460 V

We resolve the light produce in each amplification stage.

Gain in single-GEM

Light yield in single-GEM

Glass Micromegas

Light spectrum

⁵⁵Fe spectrum only observed if source was collimated

Glass Micromegas

F.J. Iguaz, RD51, 19th June 2018

X-ray radiography

https://gdd.web.cern.ch/GDD/ gemreadout.htm

Optically read out MMs (2018)

F. Brunbauer (CERN)

Combined Optical and Electronic Readout for Event Reconstruction in a GEM-based TPC

Authors: F. M. Brunbauer, F. García, M. Lupberger, E. Oliveri, D. Pfeiffer, L. Ropelewski, P. Thuiner, and M. van Stenis¹

Optically transparent **ITO strip** anode permits simultaneous readout of electronic signals and secondary scintillation light. ITO can be structured with photolithography and etching in HCl.

Glass Micromegas