

News on DLC Coatings

<u>Yi Zhou¹</u>, You LV¹, Lunlin Shang², Guangan Zhang², Jianxin Feng¹, Xu Wang¹, Jianbei Liu¹, Zhiyong Zhang¹

- 1. State Key Laboratory of Particle Detection and Electronics, University of Science and Technology of China
- 2. State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences

RD51 Collaboration Meeting, Munich 22-06-2018

>Thick DLC coating

>Coating DLC with Copper

>DLC Photocathode

Large Volume Resistivity DLC on Metal

Affect of Heating and Pressure

"Thick" means around 1µm

Thick DLC Coating

Why do we coat thick DLC?

- 1. Better uniformity of thickness/surface resistivity ;
- 2. Higher mechanical strength;
- 3. Stronger blocking ability to the liquid;

How do we coat thick DLC?

- 1. More hydrogen doped, higher surface resistivity ;
- 2. Large thickness, lower surface resistivity;
- **3.** Longer deposition time, larger thickness of the DLC

Flow Chart of the DLC Coating

Potentialities of Coating DLC with Copper

1. Improving the quality of current MPGDs

2. Allowing printed circuit layouts on DLC thus realizing complex functions

Figures come from the presentation of G. Bencivenni

Conductive strips using screen-printing cause dead areas

DLC + Cu allow to use photolithography to greatly reduce dead areas

Coating DLC with copper can expand the capacity and applications of the MPGDs and open a way for new MPGD architectures

Surface resistivity of DLC changed by heating is observed, but we didn't find the rules yet, we need well arranged systematical work to understand it.

Affect of heating

Motivation:

To find out the intrinsic reason of the surface resistivity changing caused by heating.

	Resistivity 1	Temperature	Time	Gas	Surface Resistivity 2	
1	300ΜΩ/□	300°C	120min	Air	120MΩ/ □	
2	200ΜΩ/□	300°C	120min	Air	100MΩ/ □	
3	100ΜΩ/□	300°C	120min	Argon	30ΜΩ/□	
4	90MΩ/□	300°C	120min	Nitrogen	20ΜΩ/□	
5	150MΩ/□	300°C	60min	Air	50ΜΩ/□	
6	140MΩ/□	300°C	60min	Air	50ΜΩ/□	
7	250ΜΩ/□	300°C	1050min	Air	93ΜΩ/□	Long term heating should count the effect of surface resistivity increasing by DLC itself.
8	30MΩ/ □	300°C	1050min	Air	11ΜΩ/□	
9	140MΩ/□	300 °C	1050min	Air	64MΩ/□	
10	50ΜΩ/□	200°C	780min	Air	40ΜΩ/□	

Affect of pressure

Motivation:

To understand how does the press gluing process ($10 \sim 20 \text{kg/cm}^2$) during the detector manufacture change the surface resistivity of DLC.

Press Machine

Put the sample in the steel mould

Put the sample in the steel model

20kg/cm², 180 °C

Take out after 10h 483MΩ/□

- > The pressure process can really change the surface resistivity of the DLC;
- > It seems that I get an opposite result with what we observed from the μ RWELL detectors;
- Maybe we have to do systematical test by using the device in Rui's workshop;

Atsuhiko Ochi Giovanni Bencivenni

For their help on this R&D work