Understanding discharge formation in GEM detectors by simulating the primary charge density

Andi Mathis
Technische Universität München
19.06.2018
RD51 Collaboration Meeting
Discharges in GEMs

- Breakdown appears when the total charge in the avalanche reaches critical value Q_{max}
 - $Q_{\text{max}} = G_{\text{max}} \times n_{\text{prim}} \approx 10^{7} \text{e}^{-}$
 - Beware of highly ionizing particles!
 - “High rate behavior and discharge limits in micro-pattern detectors”, A. Bressan et al. NIM A 424 (1999) 321

- Spark in GEM:
 - $\Delta V_{\text{GEM}} \to 0$
 - may be harmful to the detector and electronics
 (large energy release)

- Multi-GEM structures
 - charge spreads over many GEM holes

- Dedicated workshop on Thursday

S. Bachmann et al, NIM A479 (2002) 294
GEMs in harsh environment

- COMPASS: Up to 1 MHz/cm² in the middle segments
- LHCb: Up to 0.5 MHz/cm² in the middle segments
- TOTEM: Operated at 10 kHz/cm² in the middle
- Trackers
 - Short drift gap \mathcal{O}(mm), Ar-based mixtures
 - No pile-up expected
 - Up to a few electrons/hole expected (MIP)
- Troublemakers
 - Highly Ionizing fragments ($N_{\text{prim,}\alpha} = 10^4 \times N_{\text{prim,MIP}}$)
 - Charge densities in the bottom GEM, after full amplification
 (e.g. IBF-optimized multi-GEM stacks)
- Stability of your system relies on the stability of a single GEM!
 - Critical charge density & Influence of the gas?
Single-GEM measurements

- Single GEM detector, variable drift
- Standard GEM: 50/70 µm, 140 µm
- Alpha source shoots perpendicular to the GEM
- Discharge probability $P = \frac{\text{#sparks}}{(\text{time} \times \text{rate})}$
- Measured spark rates < 1 Hz

- Gas mixtures:
 - Ar-CO$_2$, Ne-CO$_2$ (90-10)
 - Ar-CO$_2$ (70-30), Ne-CO$_2$-N$_2$ (90-10-5)

"Coin" mixed source
- 239Pu + 241Am + 244Cm
- 5.2 MeV + 5.5 MeV + 5.8 MeV
- Rate = 600 Hz
Detector characteristics

- $E_{\text{ind}} = 0$, $E_{\text{drift}} = 400$ V/cm
- Measure absolute gain (true GEM multiplication)
 $\varepsilon_{\text{coll}} = 100\%$ at 400 V/cm drift
 $\varepsilon_{\text{extr}} = 0\%$ with $E_{\text{ind}} = 0$
 $G_{\text{eff}} = \varepsilon_{\text{coll}} \times G_{\text{abs}} \times \varepsilon_{\text{extr}}$

- Exponential fit to describe data
 - Used for further extra- and interpolation
 - Gain evaluated before each measurement session
 - Defined by gas choice and drift distance
 - Single point measurement $< 2h$
 - Single session time $< 8h$
 - Max p variation < 2 mbar $\rightarrow \Delta \text{Gain} < 1\%$
Discharge studies – charge density hypothesis

- Discharge probability strongly depends on inclination angle and amount of ionization close to the GEM
 - Shooting perpendicular increases discharge rate by ~ one order of magnitude

\[P \sim 10^{-6} \]

\[P \sim 10^{-5} \]

Ar-CO$_2$, G= 30,000

Ne-CO$_2$-N$_2$, G= 45,000

GEANT 4 sim
Discharge curves

- Discharge probability measured for different distances between the source and the GEM (d_{source})

![Discharge curves graph](image)

<table>
<thead>
<tr>
<th>Gas</th>
<th>ν_d [cm/µs]</th>
<th>D_L [cm2/cm]</th>
<th>D_T [cm2/cm]</th>
<th>W_i [eV]</th>
<th>r_s [cm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ar-CO$_2$ (70-30)</td>
<td>0.932</td>
<td>0.0138</td>
<td>0.0145</td>
<td>28.1</td>
<td>4.2</td>
</tr>
<tr>
<td>Ar-CO$_2$ (90-10)</td>
<td>3.26</td>
<td>0.0244</td>
<td>0.0268</td>
<td>28.8</td>
<td>4.8</td>
</tr>
<tr>
<td>Ne-CO$_2$ (90-10)</td>
<td>2.66</td>
<td>0.0223</td>
<td>0.0219</td>
<td>38.1</td>
<td>6.8</td>
</tr>
<tr>
<td>Ne-CO$_2$-N$_2$ (90-10-5)</td>
<td>2.52</td>
<td>0.0218</td>
<td>0.0224</td>
<td>37.3</td>
<td>6.9</td>
</tr>
</tbody>
</table>

Basic gas properties computed in Magboltz and GEANT4
Discharge curves

- Discharge probability in Ar-based mixtures > 4 orders of magnitude larger than in Ne
 - Charge densities in Argon larger than in Neon (see W_i and r_a)
 - In line with S. Procureur et al. NIM A621 (2010) 177 with MMG

![Discharge curves diagram]

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Ar-CO₂ (70-30)</td>
<td>0.932</td>
<td>0.0138</td>
<td>0.0145</td>
<td>28.1</td>
<td>4.2</td>
</tr>
<tr>
<td>Ar-CO₂ (90-10)</td>
<td>3.26</td>
<td>0.0244</td>
<td>0.0268</td>
<td>28.8</td>
<td>4.8</td>
</tr>
<tr>
<td>Ne-CO₂ (90-10)</td>
<td>2.66</td>
<td>0.0223</td>
<td>0.0219</td>
<td>38.1</td>
<td>6.8</td>
</tr>
<tr>
<td>Ne-CO₂-N₂ (90-10-5)</td>
<td>2.52</td>
<td>0.0218</td>
<td>0.0224</td>
<td>37.3</td>
<td>6.9</td>
</tr>
</tbody>
</table>

Basic gas properties computed in Magboltz and GEANT4
Discharge curves

- Clear influence of additional quencher
 - 30% of CO\(_2\) or 5% of N\(_2\)
Discharge probability vs. d_{source}

- Severe drop of the probability by several orders of magnitude at the end of the α's range
 - Only upper limits measured
- Clear correlation with the maximum range of alphas
- Highest charge densities obtained with particles impinging the GEM area
- Probability increases with d_{source}
 - Resemble Bragg curve
 - Analytical solution difficult due to opening angle, …

<table>
<thead>
<tr>
<th>Gas</th>
<th>ν_4 [cm/μs]</th>
<th>D_L [g/cm²]</th>
<th>D_T [g/cm²]</th>
<th>W_i [eV]</th>
<th>r_e [cm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ar–CO₂ (70-30)</td>
<td>0.932</td>
<td>0.0138</td>
<td>0.0145</td>
<td>28.1</td>
<td>4.2</td>
</tr>
<tr>
<td>Ar–CO₂ (90-10)</td>
<td>3.26</td>
<td>0.0264</td>
<td>0.0268</td>
<td>28.8</td>
<td>4.8</td>
</tr>
<tr>
<td>Ne–CO₂ (90-10)</td>
<td>2.66</td>
<td>0.0223</td>
<td>0.0219</td>
<td>38.1</td>
<td>6.8</td>
</tr>
<tr>
<td>Ne–CO₂–N₂ (90-10-5)</td>
<td>2.55</td>
<td>0.0218</td>
<td>0.0224</td>
<td>37.3</td>
<td>6.9</td>
</tr>
</tbody>
</table>

Basic gas properties computed in Magboltz and GEANT4
Model

- Realistic model of the detector
- Simulation of the energy deposit of alpha particles in the active detector medium (GEANT4)
- Conversion of energy deposit into ionization electrons $n_{ele} = E_{dep}/W_i$
- Drift of the electrons towards the GEM plane taking into account transverse and longitudinal diffusion and the electron drift velocity at $E_{drift} = 400$ V/cm
 - Smearing with Gaussian distribution
 - Repeated for many different d_{source}
- Similar approach as in S. Procureur et al. NIM A621 (2010) 177
Model

- Collection the charges according to their arrival position
 - Honeycomb pattern around the GEM holes
 - Assume 100% collection efficiency

- Multiplication of the charges inside the GEM holes
 - Count the electrons contained in single GEM holes

- Critical limit for charges Q_{crit} in single GEM hole
 - When exceeded \rightarrow discharge (à la Raether limit)

- Count such large primary ionization clusters and normalize to the number of all α-particles
 - Discharge probability

- Not known: Q_{crit} & the time it takes to develop a discharge t_{int}
 - Parameter scan + χ^2 minimization
Model

- Collection the charges according to their arrival position
 - Honeycomb pattern around the GEM holes
 - Assume 100% collection efficiency
- Multiplication of the charges inside the GEM holes
 - Count the electrons contained in single GEM holes
- Critical limit for charges Q_{crit} in single GEM hole
 - When exceeded \rightarrow discharge (à la Raether limit)
- Count such large primary ionization clusters and normalize to the number of all α-particles
 - Discharge probability
- Not known: Q_{crit} & the time it takes to develop a discharge t_{int}
 - Parameter scan + χ^2 minimization
Results

- Model describes data fairly well over several orders of magnitude
- Only primary ionization and basic gas properties taken into account
- No additional normalization!
- Q_{crit} extracted for $t_{\text{int}} = 30-50$ ns (best χ^2)

<table>
<thead>
<tr>
<th>Gas</th>
<th>Q_{crit}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ar-CO$_2$ (90-10)</td>
<td>$(4.7 \pm 0.6) \times 10^6$</td>
</tr>
<tr>
<td>Ne-CO$_2$ (90-10)</td>
<td>$(7.3 \pm 0.9) \times 10^6$</td>
</tr>
<tr>
<td>Ar-CO$_2$ (70-30)</td>
<td>$\sim 5 \times 10^6$</td>
</tr>
<tr>
<td>Ne-CO$_2$-N$_2$ (90-10)</td>
<td>$\sim 9 \times 10^6$</td>
</tr>
</tbody>
</table>
A few words on t_{int}

- What is the meaning of $t_{\text{int}} >> 1 \text{ ns}$?
 - Time needed to accumulate Q_{crit} charges in the GEM hole
 - Build up space charge needed for streamer formation
 - Too long for electrons…

- $t_{\text{int}} \sim 50 \text{ ns}$ compatible with ion drift time in GEM hole
 - 1-2 mm integration gap above GEM

- Compatible with S. Franchino et al., Nuclear Science Symposium and Medical Imaging Conference, IEEE (2015) 1

Fig. 6. Formation and propagation of a streamer in a GEM hole in cylindrical coordinates. The colour map represents the ion density in arbitrary units.

S. Franchino, IEEE (2015) 1
A few words on Q_{crit}

- Different Q_{crit} values extracted for different gases
 - No common Raether limit?
- Similar conclusions in S. Procureur et al. NIM A621 (2010) 177
 - Simulations cannot describe Ne- and Ar- data using only W_i weights

- Intrinsic properties of the working gas (transport, amplification, streamer development) could possibly explain the differences – more studies needed

Fig. 10. Comparison between measured and simulated spark rate as a function of the gain for argon and neon mixtures. Data are extracted from Fig. 8 in Ref. [3].

S. Procureur et al. NIM A621 (2010) 177
Summary

- Discharge probability of a single GEM upon irradiation with alphas
 - Lower breakdown limits in Argon- than Neon-based mixtures
 - Observations consistent with the charge density hypothesis

- Charge density model describes the data fairly well over several orders of magnitude
 - $Q_{\text{crit}} = (5 - 9) \times 10^6$ electrons depending on the gas mixture

- Estimated t_{int} of ~50 ns point towards ion space-charge build-up in GEM hole prior to the discharge

- Watch out particles impinging your detectors – the charge densities are the highest there!

Outlook

More studies ongoing at TUM

• Stability of HV systems for MPGD

• THGEM discharge stability
 – See talk by B. Ulukutlu on Thursday

• Discharge propagation
 – See talk by L. Lautner on Thursday

• Single-GEM stability as a function of the fields above and below Non-trivial behaviour: Maximum of the discharge probability coincides with minimum diffusion and top drift velocity
 – Hope to better constrain t_{int} and Q_{crit} – field dependency?
 – Discharge probability only dependent on charge transport?

Stay tuned!
Thank you very much!
Model

- Sorting into single GEM holes according to their arrival position
 - Honeycomb pattern around the GEM holes
 - Assume 100 % collection efficiency
 - Integrate over arrival time (t_{int}) above a given GEM hole

- Multiplication of the charges inside the GEM holes
 - Use absolute gain from the measurements
 - Count the electrons contained in single GEM holes

- Critical limit for charges Q_{crit} in single GEM hole
 - When exceeded → discharge (a'la Raether limit)
 - Count such large primary ionisation clusters and normalize to the number of all α-particles

- Discharge probability
 - Cut on discharge pile-up (one alpha – max one discharge)
 - Not known: Q_{crit} & t_{int} → parameter scan + χ² minimization

(exemplary)
Constraining Q_{crit} and t_{int}

- Free parameters: Q_{crit} & t_{int}
- Compare simulations for different values of the parameters with experimental data
- Fix Q_{crit} & t_{int} by χ^2 minimization

- $t_{\text{int}} \in [2, 400]$ ns
- $Q_{\text{crit}} \in [1, 125] \times 10^5$ e$^-$ (step of 0.5×10^5 e$^-$)