Toolkit for simulation of Detector's Charging Up/Down in **MPGD**s

RD-51 Collaboration meeting

Michael Pitt¹, P.M.M. Correia², S. Bressler¹, L. Arazi³, A.E.C Coimbra¹, D. Shaked-Renous¹, C.D.R Azevedo², J.F.C.A Veloso² and A. Breskin¹

¹Weizmann Institute of Science, Israel
²University of Aveiro, Portugal
³Ben-Gurion University of the Negev, Israel

Overview

- Initially developed by Rob Veenhof and Aveiro group (2014 JINST 9 P07025)
- The aim of the tool is to study the effect of charge accumulation on detector's insulating surfaces (2018 JINST 13 P01015)
- Available on https://github.com/pmcorreia/Garfpp-chargingup.git
- Based on the superposition principle (see next slides)
- Applicable for any MPGD geometry
- It's a c++ class interfaced with Garfield++ simulation package:

Overview - examples

- Gain variation due to accumulated charges can be simulated using Garfield++ interfaced with the toolkit.
- This allows studies of physics performance of detectors incorporating insulating surfaces

Overview - examples

- Gain variation due to accumulated charges can be simulated using Garfield++ interfaced with the toolkit.
- This allows studies of physics performance of detectors incorporating insulating surfaces

Example: Study of initial gain stabilization in THGEM with different geometry/conditions

Overview

- Gain variation due to accumulated charges can be simulated using Garfield++ interfaced with the toolkit.
- This allows studies of physics performance of detectors incorporating insulating surfaces uieo 140 Uigo 140 THGEM; Gas = Ne THGEM: Gas = Ne

Example: Study of initial gain stabilization in THGEM with different geometry/conditions

Data: $\Delta V=740V$

G_c=584; τ=₁

t=0.4;a=0.1;d=0.5;h=0.1

Gain Gain

2.2

1.8

1.6

1.4

1.2

0.8

0.6

M. Pitt – RD 51 Collaboration meeting

2.4

2.2

40 60 80

100 120 140 160 time [min]

a

e

Ч

time [min]

Superposition principle

The simulation of charging-up rely on the superposition principle

The tool is able to superpose field maps provided by the FEM program:

- (1) Electric field calculation due to **applied voltages** on detector's electrodes
- (2) Electric field calculation due to **electrical charges** on detector's surfaces
- (3) Superposing (1) with (2) to obtain a new field map

M. Pitt - RD 51 Collaboration meeting

Superposition principle - example

- Design your detector geometry, calculate field maps when:
 - 1. Voltage is applied on detector's electrode
 - 2. A slice is charged with a single unit charge

PRNSOL_900V.lis PRNSOL_slice10.lis Example: THGEM divided into 20 slices PRNSOL_slice11.lis PRNSOL_slice12.lis PRNSOL_slice13.lis PRNSOL_slice14.lis **Top Electrode** PRNSOL_slice15.lis PRNSOL_slice16.lis Slice 1 PRNSOL_slice17.lis PRNSOL_slice18.lis PRNSOL_slice19.lis PRNSOL_slice1.lis PRNSOL_slice20.lis PRNSOL_slice2.lis PRNSOL_slice3.lis PRNSOL_slice4.lis PRNSOL_slice5.lis Slice 20 PRNSOL_slice6.lis **Bottom Electrode** PRNSOL_slice7.lis PRNSOL_slice8.lis

Ansys®

PRNSOL_slice9.lis

Implementation in Garfield++

"ChargingUpAnsys" class allows to manipulate with Ansys field maps:

In a new iteration, modified field map will be used

Simulation setup: THGEM case

- In the <u>GitHub</u> entry an example for THGEM is provided
- In the example, n_p avalanches simulated, and charge that end-up on the insulating surfaces (Q^{up}) is stores in double simlatedCharges[nSlices];
- The actual amount of charge = $Q^{up} \times step$ (see next slide)

Simulation setup: THGEM case

- Since the total charge accumulated on the slices is small to significantly modify electric field, then one can:
 - Continue to iterating, adding charges (Millions of iteration)
 - Multiply charges by constant value to speed up the process
- Step size is a fixed parameter usually large for high voltages

Gain stabilization as a function of the number of the simulated iterations can be converted to actual time by:

$$\boldsymbol{t[sec]} = \frac{step}{n_p \times R[Hz]} \times n_{iter}$$

Gives the ability to compare to experimental results

Down charging – Motivation

Measurement in pure noble gases showed that after a sable gain is achieved, further changes in irradiation rate are not affecting the detector's gain (furthermore, the stable gain value is rate independent – see slide 15)

Down charging – Motivation

- With the same operational detector condition, **BUT** different gas mixture gain stabilization is no longer rate independent.
- This might be attributed to charge evacuation via electronegative gas molecules.

Charge evacuation model

- Introduce down-charging mechanism: $\Delta Q = Q^{up} \lambda Q$
- Charge evacuation rate is currently fixed by a user

//end of the for loop

- In the absence of charging up, $Q^{THGEM} = Q^{THGEM} \times e^{-\lambda \cdot n_{iter}}$
- Then one can extract the down-charging parameter using gain stabilization time τ_{DN} , by

$$\boldsymbol{\lambda} = \frac{1}{\tau_{DN}} \times \frac{step}{n_p \cdot R[Hz]} \begin{bmatrix} 1\\ s \end{bmatrix}$$

• Work is ongoing to determine evacuation rate for various gas mixtures

Charge evacuation model

- Introduce down-charging mechanism: $\Delta Q = Q^{up} \lambda Q$
- Charge evacuation rate is currently fixed by a user

19 June 2018

M. Pitt - RD 51 Collaboration meeting

- The toolkit is available for the study of charging up/down in detector elements incorporating insulating materials
- Applicable to any MPGD geometry
- The Tool has been used in studies of GEM and THGEMs.
- Permits electric field variations within Garfield++ package.
- Down-charging is currently tested, up to now it is up to the user to fix the rate.

Back up

Principle of superposition

The simulation of charging-up rely on the superposition principle

Simulation setup: Limitations

• Step size is a fixed parameter usually large for high voltages, one should scan different steps untill the correct range is found

Simulation setup: Limitations

• Step size is a fixed parameter usually large for high voltages, one should scan different steps untill the correct range is found

