High-speed optical GEM readout

F. M. Brunbauer

on behalf of the CERN EP-DT-DD GDD team

RD51 collaboration meeting June 20, 2018

Optical readout

Intuitive pixelated readout with megapixel imaging sensors

High spatial resolution

Integrated imaging approach

Lenses and mirrors to enable adjustable magnification and camera location

Frame rate

Radiation hardness of imaging sensors

Need of **CF₄**-based gas mixtures or wavelength shifters

Optical readout

Intuitive pixelated readout with megapixel imaging sensors

High spatial resolution

Integrated imaging approach

Lenses and mirrors to enable adjustable magnification and camera location

Frame rate

Radiation hardness of imaging sensors

Need of **CF**₄-based gas mixtures or wavelength shifters

Frame rate

CCD7 Hz frame rate

sCMOS 100 Hz frame rate

Image adapted from: B. Pogue, Nature 516 (2014) 46-47

Frame rate

CCD7 Hz frame rate

sCMOS 100 Hz frame rate

Image adapted from: B. Pogue, Nature 516 (2014) 46-47

High-speed CMOS cameras

Photron FASTCAM SA-Z

H_A	56	48	40	32	24	16	8
1024	300.000	336.000	360.000	450.000	525.000	672.000	900.000
896	315.000	360.000	400.000	480.000	560.000	720.000	900.000
768	360.000	400.000	450.000	525.000	630.000	800.000	1.008.000
640	400.000	450.000	525.000	600.000	720.000	840.000	1.008.000
512	480.000	525.000	600.000	700.000	800.000	900.000	1.200.000
384	525.000	630.000	720.000	800.000	900.000	1.008.000	1.400.000
256	700.000	720.000	840.000	900.000	1.008.000	1.200.000	1.400.000
128	900.000	900.000	1.008.000	1.200.000	1.200.000	1.440.000	2.100.000

- 1 megapixel CMOS sensor
- 12 bit depth
- 20 kfps at full resolution
- **2.1 Mfps** at 128x8
- ISO 50,000 sensitivity

Phantom v2512

- 1 megapixel CMOS sensor
- 12 bit depth
- 25 kfps at full resolution
- **1 Mfps** at 128x32
- ISO 100,000 sensitivity

Resolution	FPS
1280 x 800	25,700
1280 x 720	28,500
1024 x 512	47,400
640 x 480	70,100
512 x 384	99,800
256 x 256	206,300
256 x 128	380,100
128 x 64	783,100
128 x 32	1,000,000
128 x 16	1,000,000

High-speed CMOS cameras

Ar/CF₄ gas mixtures feature ample visible scintillation light emission with a peak around **630 nm**

The response of high-speed CMOS is compatible with the scintillation light emission from **Ar/CF**₄

The Phantom v2512 CMOS sensor features a peak quantum efficiency of about 50% at 650 nm

X-ray fluoroscopy

X-ray tube

2 kfps, 40kV - 40mA X-rays, quad-GEM at 400V

Minimising motion blur and enabling fast radiography due to fast sensor readout and sensitivity

X-ray fluoroscopy

2 kfps, 40kV - 40mA X-rays, quad-GEM at 400V Minimising motion blur and enabling fast radiography due to sensor readout and sensitivity

Beam monitoring

Tens of kHz at 1 Mpx readout

Fast readout enables direct feedback on beam position and profile

Incoming beam

Next step:

Evaluate possibility of on-camera imaging processing for sparse readout and active feedback

Optically read out TPC

Depth information can be determined from time between primary (S1) and secondary (S2) scintillation and width of S2 signal

Optically read out TPC

At **very low drift fields**, the arrival time of primary electrons at the GEM in a TPC setup can be resolved in **individual image frames**

From the known time difference between frames, the depth of interaction at a certain 2D location can be determined

3D alpha track reconstruction

At very low drift fields, the arrival time of primary electrons at the GEM in a TPC setup can be resolved in individual image frames

From the known time difference between frames, the depth of interaction at a certain 2D location can be determined

3D alpha track reconstruction

At very low drift fields, the arrival time of primary electrons at the GEM in a TPC setup can be resolved in individual image frames

From the known time difference between frames, the depth of interaction at a certain 2D location can be determined

3D alpha track reconstruction

X-ray photon sensitivity

Potential application:

Full-field X-ray fluoroscopy with energy sensitivity and large active area

10 kfps, 55Fe, GEMs at 400V, 4x4 software binning

X-ray photon sensitivity

Potential application:

Full-field X-ray fluoroscopy with energy sensitivity and large active area

10 kfps, 55Fe, GEMs at 400V, 4x4 software binning

Conclusions

Ultra-fast CMOS cameras enable novel readout approaches and offer high sensitivity

Imaging at 1 Mfps enables imaging at time scales compatible with drift times and enables 3D reconstruction in a TPC

On-camera **image processing** might enable active feedback beam monitoring systems

3D printing of functional detector components

F. M. Brunbauer

on behalf of the CERN EP-DT-DD GDD team

RD51 collaboration meeting June 20, 2018

Additive manufacturing

Image from: http://www.custompartnet.com/wu/gused-deposition-modeling and from www.lpfrg.com

Fused filament fabrication

Leapfrog Bolt

Specifications: 400 µm traces

Max. object size: 30x30x20cm²

Conductivity: $100 - 0.6 \Omega$ cm

Accessible: ≈5 k€

Stereolithograhy + Selective laser sintering

56 (2014) 336 - 344

B. Niese et al. Physics Procedia **56** (2014) 336 – 344

Silver-filled, solvent-free conductive adhesive High conductivity Experimental hybrid technique

Functional Nano Inks

DragonFly™ 2020 Pro 3D Printer

Specifications:

100 µm traces

Min. object size: 400 µm

Min. Layer thickness: 12 µm

Expensive: ≈250 k€

Potential geometries

MSGC-like structure

THGEM-like structure

Technique: Fused deposition modeling

Plastic filaments are heating in the moving head of a 3D printer and extruded through a thin nozzle. 3D objects are built up layer by layer in Z direction and the print head moves in XY across each layer.

Multiple extruding nozzles enable multi-colour or multi-material printing. This allows the usage of dissolvable support material or special materials such as electrically conductive carbonloaded filaments.

Copyright © 2008 CustomPartNet

Image from: http://www.custompartnet.com/wu/fused-deposition-modeling

Outgassing

Outgassing measurements in vacuum available for 3D printed material

Data from:
NASA, "Outgassing Data for Selecting
Spacecraft Materials"
https://outgassing.nasa.gov

Material	Total Mass Loss %
PEEK	0.14
FR4	0.27
PLA PLASTIC	0.56
ABS PLASTIC, 3D PRINTED	0.94
Kapton tape (siliconised)	1.5

Test cubes (1x1x1cm³) placed in UHV-grade vessel. Some outgassing of water from both insulating as well as conductive PLA observable

2 conductive plates (black) separated by 2cm

Housed in 3D printed gas volume made of insulating material (red)

Printed overnight with 0.1mm layer height and slow speed for high surface quality

Timelapse of printing

IR-image during printing

Finished print

- 6mm tube inserted
- Fixed with glue
 Contact to conductive
 plates with Ag-loaded
 adhesive

Mounted in front of X-ray tube

Flushed with Ar at 5l/h (some leak of ≈1l/h)

One plate grounded through ammeter, other plate biased

Recorded current depends linearly on the X-ray tube current i.e. X-ray intensity

Significant saturation / signal loss is observed for high X-ray intensity in the case of low drift fields

2 layers of strips separated by insulating material

Bottom strips: 3mm wide at 6mm pitch

Top strips: 2mm wide at 6mm pitch

Signal feedthrough to the back for contacting

18kΩ resistance along track 2-7kΩ resistance through contact feedthrough

Contact pads on the back with Ag-based adhesive

Connected to D-Sub25 feedthrough

Mounted below quad-GEM stack with ≈1cm induction gap

Electrical signals read out by APV25 connected to SRS

100 V/cm drift field 320 V across each GEM 200 V/cm induction field 4700x signal attenuation

Conclusions

Additive manufacturing of combined **conductive** and **insulating** structures may be useful for prototyping and manufacturing functional detector components

Fused filament fabrication (FFF) with **graphite-loaded filaments** can be used to fabricate **functional structures**

MPGD structures (e.g. THGEM) are **not accessible** by FFF due to limited resolution

Alternative technologies (e.g. conductive ink printing) could achieve necessary resolution

Thank you

Backup

High speed imaging

Popping baloon with 20kfps

Recording alpha tracks in TPC

X-ray fluoroscopy

Bubbles in water, recorded at 5 kfps, displayed at 1/50 speed

X-ray fluoroscopy

Remote controlled Blade drone in paper cylinder in front of detector irradiated with X-ray tube

Phantom high speed camera

Hadron therapy

Hadron therapy allows selective

targeting of cancerous tissue

Adapted from iba Proton Therapyhttps://www.youtube.com/watch?v=MS590Xtq9M4&t=5s

Scanning pencil beam delivers dose according to patient-specific treatment plan

State-of-the-art

M. Hohlmann (Florida Tech) arXiv paper (2013)

Conceptual ideas but no realisation

https://arxiv.org/pdf/ 1309.0842.pdf 3D printed GEM claimed in US high school student competition (2017)

no further info found

L. Thompson et al. (Sheffield University)

"3D Printing Gaseous Radiation Detectors" IEEE NSS 2017

3D printed box housing single wires

Smoothing of PLA

Tried smoothing PLA printed parts in ethyl acetate

Parts dissolved and reaction to conductive and insulating PLA was different

Not suitable to smooth printed parts

1D strip anode for 10x10 cm² active area

2mm wide strips with a pitch of 4mm

Outgassing

Compatibility of PLA outgassing with gaseous detectors in open gas flow mode needs to be evaluated but seems feasible from available outgassing numbers compared to other commonly used materials

Material	Total Mass Loss %	Collected Volatile Condensable Materials
PEEK	0.14	0.00
FR4	0.27	0.00
PLA PLASTIC	0.56	0.01
ABS PLASTIC, 3D PRINTED	0.94	0.04
Kapton tape (siliconised)	1.5	0.52
Araldite 2020	2.17	0.10

Outgassing measurements in vacuum. Data from:

NASA, "Outgassing Data for Selecting Spacecraft Materials", https://outgassing.nasa.gov, Accessed February 26, 2018