

STATUS AND UPGRADE PLANS FOR A 20 MUON DETECTORS NETWORK AT LSBB.

Ignacio Lázaro Roche on behalf of T2DM2 collaboration

OBJECTIVES

Development of a new non-destructive, compact tool based on the measurement of cosmic muons for imaging and monitoring large volumes of matter

Monitor the temporal density variations

New geophysics' tool based on a thin Time Projection Chamber read by a resistive Micromegas plane

INTRODUCTION - LSBB

Low background noise environment

Introduction

 \mathbf{O}

- Clean room to assemble detectors
- The layout of the galleries allows to deploy the camera network easily both on the surface and underground

 $\mathbf{O} \mathbf{O} \mathbf{O}$

00000

00

Rustrel, France

- Easy access and access to network, electricity, etc.
 - Measurements synergy: gravimetry, MRS, hydrogeology, hydromechanical tilt, GPR...

INTRODUCTION — DETECTOR MUST²

MUon Survey Tomography based on Micromegas detectors for Unreachable Sites Technology

INTRODUCTION - DATA ACQUISITION Example of signal acquired with an

- Reconstruction of a single channel signal shape, allows to retrieve:
 - Let time of passage (res. few ns)

- 27 measures of V from 128 channels, 25 ns sampling rate
- The vertical bars separate the different time windows
- Every time window contains the V of 128 channels

Example of signal fit with a Fermi-Dirac function for 1 isolated channel

 \bigcirc

Y axis

INTRODUCTION - DATA ACQUISITION

Trajectories

- Cluster: Association of adjacent tracks hit within a fix interval
- The projection of the muon-induced electrons hits several contiguous tracks
- Reduces the number of fake events (less instrumental noise)

The combination of X & Y clusters allows reconstructing 2D points with an accuracy better than mm

Reconstruction of the retrieved points in the detector plane.

Raw data

Points

Trajectories

INTRODUCTION - DATA ACQUISITION

- The arrival time of e⁻ is distance-dependent
- The e⁻ drift speed is known and constant for a given \vec{E}
- The time difference provides information about the original height of the ionization point

- The analysis of 3D points allows to define the trajectory of the particle
- The trajectory is characterized by its
 Zenith (θ) and Azimuth (φ) angles

DETECTOR CALIBRATION

Aerial view of the top of the mountain hosting the LSBB, test site for open air measurements.

Number of muons:
Expected according to Tang model (translucid)
Experimental measurement (opaque)

1400

DETECTOR CALIBRATION

Ratio = $\frac{\text{Muons per azimuth deg } OPEN SKY}{\text{Muons per azimuth deg } EXP. MEASUREMENT}$

Detector location

 Objectives
 Introduction
 Calibration
 Measurements
 Conclusion

 •
 •
 •
 •
 •
 •
 •
 •
 •

DETECTOR CALIBRATION

Approximation of the 360° view around the detector

 Objectives
 Introduction
 Calibration
 Measurements

 •
 •
 •
 •
 •

<u>MEASUREMENTS — STUDY SITE</u>

Known topology

Monitored parameters:

Temperature, humidity and atmospheric pressure inside the valve house

Level, temperature and conductivity of reservoir's water

Precipitations (only known water source)

□High atmosphere pressure

Earth tides

of Muons

Temporal Tomography of rock mass density by the Measure

2DM2

MEASUREMENTS - DIGITAL MODEL

Ο

Source: Société du canal de Provence

*Thanks to K. Jourde, member of T2DM2 collaboratio Pracio LÁZARO for RD51 meeting 2018 12

00000

Measurements

00

 $\bullet \bullet \bullet \bullet \bullet$

 \mathbf{O} \mathbf{O} \mathbf{O}

ives Introduction Calibratio

0

Ation Measurements

Conclusions

MEASUREMENTS - RESULTS

Ignacio LÁZARO for RD51 meeting 2018 13

MEASUREMENTS — RESULTS

Integration time = 3d17h

Ο

00000

000

*Bin = Representation of the hemisphere over the detector in a matrix of pixels of dimension 360x360 Measurements Cor

MEASUREMENTS — RESULTS

Temporal evolution of muon flux and water level

- Strong sine-wave behaviour due to the effect of the temperature in both the barometer used to determine the water level and the MUST² detector
- The linear regression of the whole data shows that the emptying trend of the dam is related to a rise of the muon flux

OUTLOOK

 Monitor the water transfer in the non-saturated zone above the galleries

Construction and deployment of a network of 20 autonomous detectors

Roughly the same design as the previous version, but smaller and squared (50x50cm²)

Versatile set up configurations: isolated, clustered, stacked, aligned surface/underground...

00000

 \mathbf{O}

00000

0

Conclusions

CONCLUSIONS

 \checkmark Very encouraging results from the first acquisition test under real field conditions

Field transportability and reliability demonstrated : possibility to do long term campaigns

 \checkmark The track reconstruction algorithm and noise filtering has room for improvement in order to enhance the robustness of the results

Next step: more experimental data and further data analysis development is required to support the numerical model and resolve the inversion and obtain the medium density

Acknowledgements

PhD leading institutions:

PhD collaborators:

Project sponsors:

SPARE SLIDES

View of the detector inside the valve house of the dam the during the data acquisition

