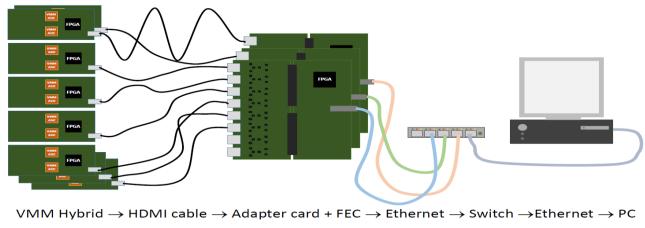
FEC Firmware optimization for the VMM frontend

Yan Huang, CCNU Wuhan CERN/RD51 and CERN/ESS team

Outline

- Motivation
- Default project
- My project
- Results
- Summary


Motivation

- APV trigger rate: 1 KHz
- VMM : self triggered, can have 1000 times more data than APV !

FPGA in FEC card: Virtex-6

Firmware must be optimized first for current VMM hybrid:


Continuous data flow from up to 16 VMM hybrids needs to be combined and controlled.

Current SRS System

Default project

- 8 hybrids, 16 VMM ASICs in total.
- 1 hit : 38 bit of data \rightarrow blown up to 64 bit to fit old APV data format.
- One VMM, one frame.

Default project problems

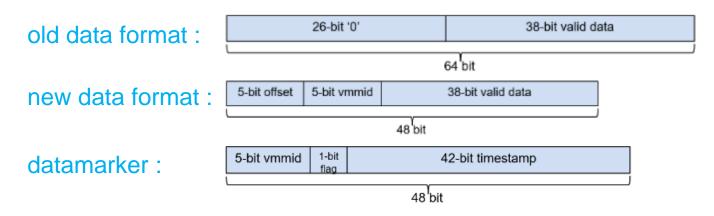
- Hits can be lost
- Limited number of hits
- Sequential operation induces dead time
- Ethernet bandwidth wasted by 0s and many small packets

Goals for my improved project

- No hit loss
- Throughput of datapath high enough for full VMM readout speed
- Parallel readout of data from VMM and sending though Ethernet
- Optimal usage of Ethernet bandwidth
- Steady flow of data at high speed

Unambiguous assignment of time needs to preserved.

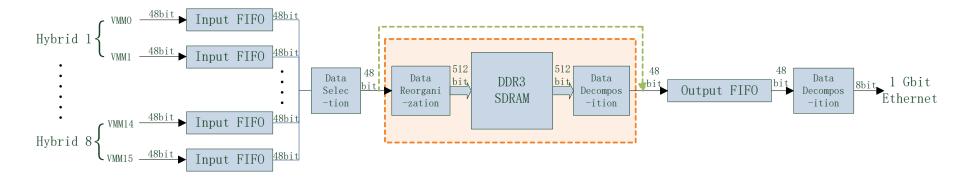
Time information


• In data : 20 bit time information (bcid:12 bit + tdc:8 bit)

 \rightarrow unique assignment within one trigger period.

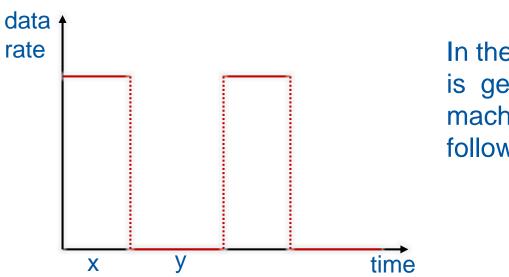
- Default project : one trigger period = one Ethernet package with all hits + SRS timestamp + trigger period count.
- My project : continuous data flow
- → Timestamp needs to be in data
- → datamarkers + new data format

Data format comparison



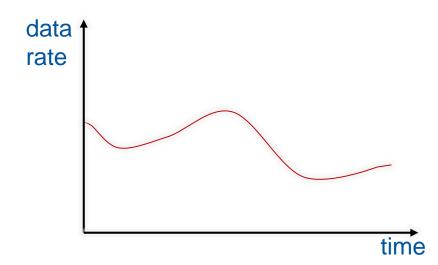
New data format : at least 38 bit + 5 bit to identify VMM in combined dataflow

- \Rightarrow 5 bit left unused
- \Rightarrow use as an offset to the last timestamp in datamarker
- ⇒ datamarker only needed when offset overflows (reduce Ethernet payload)
- Every $2^5 = 32$ periods, there will be some new datamarkers.
- Flag : '0' \rightarrow datamarker, '1' \rightarrow hit (part of 38-bit valid data).
- More hits can be transmitted during the same time


My project:

- Data selection with single hit token from VMM input FIFO
- DDR3 memory can be used or not.
 - 10 input data (10*48 bit) + 32bit '0' = one ddr3 data (512bit)
 - \Rightarrow 2GB DDR3 can store **335,544,320** hits.
- Send out jumbo frame when it is full.

Example


In the simple case where data is generated by a pulsed machine during some time x, followed by a pause time y.

One can make the DDR3 buffer large enough such that all data generated during time x fits conveniently without overflow.

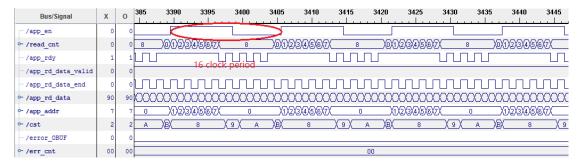
Then, during the pause time y, the buffer is emptied and written to the online system.

Example

In the more difficult case, data is generated permanently at some fluctuating input rate there is no pause. The data must get read out simultaneously as it is written in.

As long as the average input rate *Rin* is only a little less than the average output rate *Rout*, a maximum readout performance can be achieved without data loss.

Results


R/W bandwidth test of DDR3 memory

Bus/Signal	х	0	3135 3140 3145 3150 3155 3160 3165 3170 3175 3180 :
/app_en	0	0	
∽/cst	2	2	X4X
-/app_rdy	1	1	4 clock period
/app_wdf_rdy	1	1	
/app_wdf_wren	1	1	
<pre>/app_wdf_end</pre>	0	0	
∽ /app_wdf_data	9E	9E	3 XX 70 XX 78 XX 80 XX 88 XX 90 XX 98 XX A0 XX A8 XX B0 XX B8 XX C0 XX C8 XX D0
∽ /app_addr	7	7	<u> </u>
<pre>-/error_OBUF</pre>	0	0	
⊶ /err_cnt	00	00	00

writing one burst word (512 bit) takes 4 user clock periods (200MHz), one can thus get the write bandwidth: $512 \div$ $8 \div (4 \times 5) = 3.2$ Gbyte.

Write Timing Diagram of DDR3

Reading eight burst words takes 16 user clock periods, so read bandwidth can be calculated as: $512 \times 8 \div 8 \div (16 \times 5) =$ 6.4 GByte.

Read Timing Diagram of DDR3

Comparison data format

Test condition: 6 VMMs are selected, 4 of them are connected and have data

lits: 14
its: 3
its: 0
its: 0
Hits: 12
Hits: 12
ame

Now:

Drovious

7 0.019464445	10.0.0.2	10.0.3	SRSVMM	8992 FEC: 0, Hits: 1489
8 0.019628312	10.0.0.2	10.0.3	SRSVMM	60 End of Frame

Comparison data format

Previous:

5	SRS Head	er												
	Frame	Cour	nter	: 118	836579	(11836	6578)							
	Data I	(d:)	VMM2	Data	a									
	VMM ID: 1													
	SRS Ti	mes	tamp	: 679	9673856	(6796	608320)						
	▼ Hit:	1,	ch:	12,	bcid:	46,	tdc:	70,	adc:	368,	flag:	1,	othr:	1
	▶ Data	a1 0	0a79	80e,	(7019e	500)	C							
	▶ Data	a2 c	c000	000,	(00000	033)	64	F DIT						
	⊳ Hit:	2,	ch:	13,	bcid:	46,	tdc:	75,	adc:	378,	flag:	1,	othr:	1
	⊳ Hit:	з,	ch:	14,	bcid:	46,	tdc:	72,	adc:	371,	flag:	1,	othr:	1
	⊳ Hit:	4,	ch:	15,	bcid:	46,	tdc:	72,	adc:	384,	flag:	1,	othr:	1
	⊳ Hit:	5,	ch:	16,	bcid:	46,	tdc:	64,	adc:	348,	flag:	1,	othr:	1
	⊳ Hit:	6,	ch:	18,	bcid:	46,	tdc:	64,	adc:	373,	flag:	1,	othr:	1
	⊳ Hit:	7,	ch:	19,	bcid:	46,	tdc:	68,	adc:	384,	flag:	1,	othr:	1
	⊳ Hit:	8,	ch:	20,	bcid:	47,	tdc:	249,	adc:	408,	flag:	1,	othr:	1

Now:

~	SRS Head	ler													
	Frame Data 1 FEC II UDP T:	Cour Id: \ D: 0 imest	nter: 14 /MM3a Dat amp: 116 erflow la	a 65408	`										
48 bit	▼ Hit: ▶ Data	1, a1 3	offset: 3aea9c0,	6, vmm (03957	ID: 14 5cc)		54,	bcid:	46,	tdc:	35,	adc:	349,	over	thr: 1
	▶ Data		oc6, (63d			_									
	▶ Hit:	2,	offset:	6, ∨mm	ID: 15	, ch:	55,	bcid:	46,	tdc:	43,	adc:	318,	over	thr: 1
	▶ Hit:	з,	offset:	ô, ∨mm	ID: 14	, ch:	55,	bcid:	46,	tdc:	49,	adc:	255,	over	thr: 1
	▶ Hit:	4,	offset:	5, vmm	ID: 15	, ch:	56,	bcid:	46,	tdc:	16,	adc:	336,	over	thr: 1
	▶ Hit:	5,	offset:	5, ∨mm	ID: 14	, ch:	56,	bcid:	46,	tdc:	31,	adc:	370,	over	thr: 1
	▶ Hit:		offset:						46,	tdc:	24,	adc:	339,	over	thr: 1
	▶ Hit:		offset:						46,	tdc:	59,	adc:	363,	over	thr: 1
	▶ Hit:		offset:						46,	tdc:	15,	adc:	352,	over	thr: 1

Comparison data format

	offset: 31, vmmID: 0, ch: 20, bcid:	46, tdc: 46, adc: 385, over thr: 1
▶ Hit: 732,	offset: 31, vmmID: 14, ch: 11, bcid:	46, tdc: 44, adc: 335, over thr: 1
▶ Hit: 733,	offset: 31, vmmID: 0, ch: 21, bcid:	46, tdc: 47, adc: 400, over thr: 1
▶ Hit: 734,	offset. SI, VmmID: 0, ch. 3, bcid:	46, tdc: 55, adc: 414, over thr: 1
▶ Marker:	1, SRS timestamp: 327680101, vmmid: 0	
Marker:	2, SRS timestamp: 327680101, vmmid: 1	
▶ Marker:	3, SRS timestamp: 327680101, vmmid: 2) datamarker
Marker:	4, SRS timestamp: 327680101, vmmid: 3	uatamarker
Marker:	5, SRS timestamp: 327680101, vmmid: 1	4
▶ Marker:	6, SRS timestamp: 327680101, vmm <u>id: 1</u>	5
▶ Hit: 735,	offset. 0, vmmID: 15, ch: 0, bcid:	46, tdc: 24, adc: 316, over thr: 1
▶ Hit: 736,	offset: 0, vmmID: 0, ch: 4, bcid:	46, tdc: 5, adc: 391, over thr: 1
▶ Hit • 737	offset: 0, vmmID: 1, ch: 1, bcid:	46, tdc: 17, adc: 405, over thr: 1
P HIL. 151,		

Outlook

- Current focus on continuous mode.
- Triggered mode to be implemented soon.
 - → Acquire and store data until there is a trigger in, then read out data which are needed.
- More intense testing of firmware.
- Use new implementation at test beam.

Summary

- FEC firmware is advancing very well
- A big DDR3 buffer is added to the project
- Data format has been changed into 48 bit
- Bandwidth of SRS is increased
- A new mode will be implemented

Thank you!

