Numba: A Compiler for Python Functions

Stan Seibert
Director of Community Innovation @ Anaconda
My Background

- 2008: Ph.D. on the Sudbury Neutrino Observatory
- 2008-2013: Postdoc working on SNO, SNO+, LBNE (before it was DUNE), MiniCLEAN dark matter experiment
- 2013-2014: Worked at vehicle tracking and routing company (multi-traveling salesman problem)
- 2014-present: Employed at Anaconda (formerly Continuum Analytics), the creators of the Anaconda Python/R Distribution, as well many open source projects. Currently, I:
 - Manage the Numba project
 - Coordinate all of our open source projects
 - Bunch of other things (it’s a startup!)
A Compiler for Python?
Striking a Balance Between Productivity and Performance

- Python has become a very popular language for scientific computing
- Python integrates well with compiled, accelerated libraries (MKL, TensorFlow, ROOT, etc)
- But what about custom algorithms and data processing tasks?
- Our goal was to make a compiler that:
 - Works within the standard Python interpreter, and does not replace it
 - Integrates tightly with NumPy
 - Compatible with both multithreaded and distributed computing paradigms
 - Can be targeted at non-CPU hardware
Numba: A JIT Compiler for Python

• An open-source, function-at-a-time compiler library for Python
• Compiler toolbox for different targets and execution models:
 • single-threaded CPU, multi-threaded CPU, GPU
 • regular functions, “universal functions” (array functions), etc
• Speedup: 2x (compared to basic NumPy code) to 200x (compared to pure Python)
• Combine ease of writing Python with speeds approaching FORTRAN
• BSD licensed (including GPU compiler)
• Goal is to empower scientists who make tools for themselves and other scientists
A Twisty Maze of Trade-offs

- Numba may be best understood by what it is **not**:
 - Replacement Python interpreter: PyPy, Pyston, Pyjion
 - Hard to implement
 - Difficult (but not impossible) to maintain compatibility with existing Python extensions
 - Does not address non-CPU targets
 - Translator of Python to C/C++: Cython, Pythran, Theano, ShedSkin, Nuitka
 - Static analysis of dynamic languages is limiting
 - Ahead-of-time generated code is either underspecialized (both in data types and CPU capabilities) or bloated to cover all variants
 - JIT compilation requires C/C++ compiler on end user system
- **Note:** These tradeoffs do not make these approaches bad!
Basic Example

In [87]:
@jit(nopython=True)
def nan_compact(x):
 out = np.empty_like(x)
 out_index = 0
 for element in x:
 if not np.isnan(element):
 out[out_index] = element
 out_index += 1
 return out[:out_index]

In [88]:
a = np.random.uniform(size=10000)
a[a < 0.2] = np.nan
np.testing.assert_equal(nan_compact(a), a[~np.isnan(a)])

In [89]:
%timeit a[~np.isnan(a)]%
%timeit nan_compact(a)

10000 loops, best of 3: 52 μs per loop
100000 loops, best of 3: 19.6 μs per loop
Basic Example

Array Allocation

In [87]: @jit(nopython=True)
def nan_compact(x):

 out = np.empty_like(x)
 out_index = 0
 for element in x:
 if not np.isnan(element):
 out[out_index] = element
 out_index += 1
 return out[out_index]

Looping over ndarray x as an iterator

Using numpy math functions

Returning a slice of the array

In [88]: a = np.random.uniform(size=10000)
a[a < 0.2] = np.nan
np.testing.assert_equal(nan_compact(a), a[-np.isnan(a)])

In [89]: %timeit a[-np.isnan(a)]
%timeit nan_compact(a)

10000 loops, best of 3: 52 µs per loop
100000 loops, best of 3: 19.6 µs per loop

2.7x speedup!
How does Numba work?

@jit
def do_math(a, b):
 ...
>>> do_math(x, y)
Supported Platforms and Hardware

<table>
<thead>
<tr>
<th>OS</th>
<th>HW</th>
<th>SW</th>
</tr>
</thead>
<tbody>
<tr>
<td>Windows (7 and later)</td>
<td>32 and 64-bit CPUs (Incl Xeon Phi)</td>
<td>Python 2.7, 3.4-3.6</td>
</tr>
<tr>
<td>OS X (10.9 and later)</td>
<td>NVIDIA GPUs</td>
<td>NumPy 1.10 and later</td>
</tr>
<tr>
<td>Linux (RHEL 6 and later)</td>
<td>Experimental support for ARM, POWER8/9 and AMD GPUs (ROCm)</td>
<td></td>
</tr>
</tbody>
</table>
Numba Features

- Detects CPU model during compilation and optimizes for that target
- Automatic type inference: No need to give type signatures for functions
- Dispatches to multiple type-specializations for the same function
- Call out to C libraries with CFFI and types
- Special "callback" mode for creating C callbacks to use with external libraries
- Optional caching to disk, and ahead-of-time creation of shared libraries
- Compiler is extensible with new data types and functions
Numba’s CPU detection will enable LLVM to autovectorize for appropriate SIMD instruction set:

- SSE, AVX, AVX2, AVX-512
- Will become even more important as AVX-512 is now available on both Xeon Phi and Skylake Xeon processors

```python
@numba.jit(nopython=True, error_model='numpy')
def frac_diff(a, b):
    ret = np.empty_like(a)
    for i in range(a.shape[0]):
        ret[i] = np.float32(2) * (a[i] - b[i]) / (a[i] + b[i])
    return ret
```

LBB1_14:

```
vmovups (%rdi,%rbx), %ymm0
vmovups (%rdi,%r14), %ymm1
vsubps %ymm1, %ymm0, %ymm2
vaddps %ymm2, %ymm2, %ymm2
vaddps %ymm1, %ymm0, %ymm0
vdivps %ymm0, %ymm2, %ymm0
vmovups %ymm0, (%r12,%rdi)
addq $8, %rdx
addq $32, %rdi
addq $-1, %rsi
jne LBB1_14
jmp LBB1_22
```
Manual Multithreading: Release the GIL

In [14]:

```python
SQRT_2PI = np.sqrt(2 * np.pi)
@numba.jit(nogil=True)
def gaussian(x, mu, sigma):
    return np.exp(0.5 * ((x - mu)**2) / sigma) / (sigma * SQRT_2PI)

print(gaussian(0.5, 1.5, 1.0))
```

```
0.657744623479
```

Option to release the GIL

Using Python concurrent.futures

Using Python `concurrent.futures`
Universal Functions (Ufuncs)

Ufuncs are a core concept in NumPy for array-oriented computing.

- A function with scalar inputs is broadcast across the elements of the input arrays:
 - `np.add([1,2,3], 3) == [4, 5, 6]`
 - `np.add([1,2,3], [10, 20, 30]) == [11, 22, 33]`

- Parallelism is present, by construction. Numba will generate loops and can automatically multi-thread if requested.

- Before Numba, creating fast ufuncs required writing C. No longer!
Universal Functions (Ufuncs)

In [13]:
```python
@numba.vectorize
def response(v, gamma):
    if v < 0:
        return 0.0
    elif v < 1:
        return v ** gamma
    else:
        return v
```

In [14]:
x = np.linspace(-1, 2, 10000)
gamma = 1.7
@timeit np.piecewise(x, [x < 0, x >= 1],[0.0, lambda x: x, lambda x: x**gamma])
@timeit response(x, gamma)

1000 loops, best of 3: 244 µs per loop
The slowest run took 411.51 times longer than the fastest. This could mean that an intermediate result is being cached.
10000 loops, best of 3: 136 µs per loop

1.8x speedup!
Multi-threaded Ufuncs

```python
In [12]: SQRT_2 = np.sqrt(2)

@numba.vectorize('float64(float64, float64, float64)', target='parallel')
def gaussian_cdf_parallel(x, mu, sigma):
    return 0.5 * (1 + math.erf((x - mu) / (sigma * SQRT_2)))
```

Specify type signature

Select parallel target

Automatically uses all CPU cores!
ParallelAccelerator

- ParallelAccelerator is a special compiler pass contributed by Intel Labs
 - Todd A. Anderson, Ehsan Totoni, Paul Liu
 - Based on similar contribution to Julia
- Automatically generates mulithreaded code in a Numba compiled-function:
 - Array expressions and reductions
 - Random functions
 - Dot products
 - Reductions
 - Explicit loops indicated with prange() call
ParallelAccelerator

In [3]:
@numba.jit(nopython=True, parallel=True)
def logistic_regression(Y, X, w, iterations):
 for i in range(iterations):
 w = np.dot(((1.0 / (1.0 + np.exp(-Y * np.dot(X, w))) - 1.0) * Y), X)
 return w

Time (ms)

<table>
<thead>
<tr>
<th>Method</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>NumPy</td>
<td>4000</td>
</tr>
<tr>
<td>Numba</td>
<td>2000</td>
</tr>
<tr>
<td>Numba+PA</td>
<td>1000</td>
</tr>
</tbody>
</table>

1000000x10 input, Core i7 Quad Core CPU
"OpenMP for Python": prange()

```python
In [44]: @numba.jit(nopython=True, parallel=True)
    ...: def normalize(x):
    ...:     ret = np.empty_like(x)
    ...:
    ...:     for i in numba.prange(x.shape[0]):
    ...:         acc = 0.0
    ...:         for j in range(x.shape[1]):
    ...:             acc += x[i,j]**2
    ...:         norm = np.sqrt(acc)
    ...:         for j in range(x.shape[1]):
    ...:             ret[i,j] = x[i,j] / norm
    ...:
    ...:     return ret
```
Interactive image resampling with Holoviews + Datashader

Datashader resampling implemented with Numba + prange()

https://twitter.com/bokehplots/status/915611351933947904
Distributed Computing Example: Dask

```python
@jit
def f(x):
    ...
```

- Serialize with pickle module
- Works with Dask and Spark (and others)
- Automatic recompilation for each target
GPU Computing

- Primary support is for NVIDIA GPUs (via CUDA)
- Approaches:
 - Ufunc compiler targeting GPU
 - Implement and call CUDA kernels in Python syntax
- Working toward interop with other CUDA-related Python projects, like CuPy, PyCUDA, etc
CUDA Python

Denotes CUDA kernel function (launched from CPU, runs on GPU)

```python
@cuda.jit
def cuda_histogram(x, xmin, xmax, histogram_out):
    """Increment bin counts in histogram_out, given histogram range [xmin, xmax].""
    nbins = histogram_out.shape[0]
    bin_width = (xmax - xmin) / nbins

    start = cuda.grid(1)
    stride = cuda.gridsize(1)

    for i in range(start, x.shape[0], stride):
        bin_number = np.int32((x[i] - xmin)/bin_width)

        if bin_number >= 0 or bin_number < histogram_out.shape[0]:
            cuda.atomic.add(histogram_out, bin_number, 1)
```

Work with NumPy array elements and attributes on the GPU

Special CUDA function for atomic addition

Launch CUDA kernel with 32 blocks of 32 threads each

```python
In [19]:
histogram_out.fill(0)
cuda_histogram[32, 32](x, xmin, xmax, histogram_out)

histogram_out
Out[19]:
array([[  6,   85, 446, 1601, 2925, 2849, 1547,  464,   66,   11],
       [   0,   00,    0,    0,    0,    0,    0,    0,    0,    0]],
      dtype=int32)
```

© 2018 Anaconda, Inc.
Future of Numba

• Aiming for Numba 1.0 in 2018:
 • Better diagnostics to understand performance and compiler failures
 • Revamped ufunc compiler with TBB support and fewer limitations
 • Ability to have a statement block inside a compiled function jump back into the interpreter
 • Support on all major architectures: x86, ARM, PPC64, NVIDIA & AMD GPUs
 • Clearly documented compiler extension points (custom types, structs, compiler pipelines)

• Post-1.0 Numba:
 • Rewrite type inference to allow broader range of Python idioms
 • Broaden data types: strings, Arrow data frames, etc
 • C++ interop (via cling?)
 • Improve Numba architecture to enable other compiler projects to build on it
 • Integration with other Python interpreters? (Numba + PyPy anyone?)
When is Numba a Good Idea?

• Numerical algorithms
• Data is in the form of NumPy arrays, or (more broadly) flat data buffers
• Performance bottleneck is a handful of well encapsulated functions
• Example use cases:
 • Compiling user-defined functions to call from another algorithm (like an optimizer)
 • Creating "missing" NumPy/SciPy functions (librosa)
 • Rapidly prototyping GPU algorithms (FBPIC)
 • Constructing specialized Python compilers (HPAT, OAMap)
Conclusion

- Numba lets you JIT compile high performance numerical Python on-the-fly
- To learn more about Numba:
 - Easiest way to install it:
 conda install numba
 conda install numba cudatoolkit # enable GPU support
 - Homepage: http://numba.pydata.org/
 - GPU tutorial: https://github.com/ContinuumIO/gtc2018-numba
 - Numba use cases: https://www.youtube.com/watch?v=6oXedk2tGfk

- Numba development has been supported by Anaconda, DARPA, Gordon and Betty Moore Foundation, Intel, AMD, NVIDIA, and others