

FCC-ee injector baseline parameters

Yannis Papaphilippou, CERN Thanks to:

M. Aiba (PSI), A. Apyan (Yerevan Phys. Ins.), A. Barnyakov (BINP) I. Chaikovska(LAL), R. Chehab (LAL), K. Furukawa(KEK), O. Etisken (Ankara Un.), B. Harer (CERN), B. Holzer (CERN), N. Iida(KEK), A. Levichev (BINP), F. Miyahara(KEK) D. Nikiforov (BINP), S. Ogur (Bogazici Un. & CERN), K. Oide (KEK), S. Polozov (MEPhI), L. Rinolfi (CERN), J. Seeman (SLAC), D. Shatilov (BINP), T.Tydeks (CERN) F. Zimmermann (CERN)

FCC-ee injector baseline scheme

Baseline established based on SLC/SUPERKEKB-like linac (higher gradient)

- Based on collider parameters of December 2017 (CDR)
- Longer pulses with 1 or 2 bunches with repetition rate of 100-200 Hz, 2.8 GHz RF
- Maximum linac bunch intensity $\sim 2.13 \times 10^{10}$ particles (both species).
- Twice as much will be needed for e+ production, i.e. 4 x 10¹⁰ particles/bunch
- Injected several times (from **50 to 1040**), @ **6 GeV** into of PBR (SPS or new ring) with 1 linac bunch to 1 ring bucket (**400 MHz** RF system), up to **2080** bunches
- PBR ramp to **20 GeV** with **0.2 s** ramp rate and cycle length **below 6.3 s**

07/03/2018

- Transferred to main Booster (1 8 PBR cycles), with 400 MHz RF frequency, to a bunch structure required by the collider (from 50 to 16640 bunches)
- Accelerated to corresponding energy with ramp time of **0.32 2 s**, and total cycle length up to **51.7 s**
- Transferred to the collider by accumulating current for the full filling or single injection for top-up
- Interleaved filling of e+/e- and continuous top-up (able to accommodate **bootstrapping**)
- Full filling below **20 min** for both species, but also able to accommodate bootstraping
- Top-up target time, based on 5 % of current drop due to corresponding lifetime, always achieved
- **80 %** transfer efficiency

meeting

3

FCC-ee injector parameters

Accelerator	FCCe	ee-Z	FCO	Cee-W	FCC	Cee-H	FCCee-tt		
Energy [GeV]	45.	6		80	1	20	18	82.5	
Type of filling	Full	Top-up	Full	Top-up	Full	Top-up	Full	Top-up	
LINAC # bunches, with 2.8 GHz RF		2			1				
LINAC repetition rate [Hz]	20	0			100				
LINAC/PBR bunch population [10 ¹⁰]	2.13	1.06	1.88	0.56	1.88	0.56	1.38	0.83	
# of LINAC injections	104	40	ц,	500 393			50		
PBR bunch spacing [ns]	2.5	5	2	2.5	57.5		Z	450	
# PBR cycles	8				1				
PBR # of bunches	208	30	1	000	3	93	50		
PBR cycle time [s]	6.3	3	1	1.1	4	.33	().9	
PBR duty factor	0.8	4	C).56	0	.35	0.08		
BR # of bunches	1664	40	2	000	393			50	
BR cycle time [s]	51.7	74	1	3.3	7	7.53		5.6	
#of BR cycles	10	1	10	1	10	1	20	1	
# of injections/collider bucket	10	1	10	1	10	1	20	1	
Total number of bunches	16640		2000		393		50		
Filling time (both species) [sec]	1034.8	103.5	288	28.8	150.6	15.6	224	11.2	
Injected bunch population [10 ¹⁰]	2.13	1.06	1.44	1.44	1.13	1.13	2.00	2.00	

Power estimates

- Revising power estimates (see http://accelconf.web.cern.ch/AccelConf/ipac2016/pape http://seconf.web.cern.ch/AccelConf/ipac2016/pape http://seconf.web.cern.ch/AccelConf/ipac2016/pape
 - Linacs, PBR, BR (magnets and RF)

lepton collider	Ζ	W	ZH	$t\bar{t}$	LEP2
luminosity / interaction point $[10^{34} \text{ cm}^{-2} \text{s}^{-1}]$	207 90	19	5	1.3	0.012
total RF power [MW]	163	163	145	145	42
collider cryogenics [MW]	3 2	5	23	39	18
collider magnets [MW]	3	10	24	50	16
booster RF & cryogenics [MW]	4	4	6	7	N/A
booster magnets [MW]	0	1	2	5	N/A
pre-injector complex [MW]	10	10	10	10	10
physics detectors (2) [MW]	10	10	10	10	9
cooling & ventilation [MW]	47	49	52	62	16
general services [MW]	36	36	36	36	9
total electrical power [MW]	276 ~275	~ 288	~308	~364	~ 120

Some further consideration

- Considerations for pros/cons for new PBR or SPS or linac up to 20 GeV injecting to MB parameters (cost impact)
 - Other options also considered, i.e. CLIC type linac, ERL, etc.
- Refine Booster injection energy, based on magnet field quality considerations
- Considerations for **single linac** for positron production and e+/e- acceleration
 - Doubling number of bunches for Z and frequency for the rest (i.e. linacs working at 200 Hz)
- Converging on emittance requirements across the injectors
 - Including radiation damping + IBS effect for PBR and Main Booster
- Beam transfer details are being worked out
- Considerations on **RF frequencies** for the injectors
- Finalise **positron production** design

