A Large Ion Collider Experiment

Tracking and vertexing in ALICE

(Iouri Belikov for the ALICE Collaboration)

- ALICE experiment at the LHC
 - Physics goals
 - Detector layout
- ALICE reconstruction so far (Run 1 and 2)
 - Triggered readout
 - Offline
 - Primary vertex
 - Tracks from one detector to another
 - Secondary vertices
- ALICE reconstruction upgraded (Run 3)
 - Continuous readout
 - (Quasi)online
 - New challenges and strategies

http://alice-collaboration.web.cern.ch/

New in ALICE? look here!		
General		
Organization		
Service Works		
Technical Coordination		
Run Coordination		
Physics Coordination		
Documents & Conferences		
Online		
Offline		
Analysis		

Welcome to the ALICE collaboration

Our mission

The ALICE Collaboration has built a dedicated heavy-ion detector to exploit the unique physics potential of nucleus-nucleus interactions at LHC energies. Our aim is to study the physics of strongly interacting matter at extreme energy densities, where the formation of a new phase of matter, the quark-gluon plasma, is expected. The existence of such a phase and its properties are key issues in QCD for the understanding of confinement and of chiral-symmetry restoration. For this purpose, we are carrying out a comprehensive study of the hadrons, electrons, muons and photons produced in the collision of heavy nuclei. Alice is also studying proton-proton collisions both as a comparison with lead-lead collisions and in physics areas where ALICE is competitive with other LHC experiments.

CALENDAR TODAY

The ALICE detector

Inner Tracking System (ITS)

(See Luca Barioglio's talk on Monday)

Collaboration:
1800 members
177 institutes
41 countries

Detector:

Length: 26 meters Height: 16 meters Weight: 10,000 tons

Part I: Run 1 and 2

Central reconstruction strategy (Run 1 and 2)

- Kalman filter both for track finding and fitting
- Track "seeding" in the TPC
- Three tracking passes, all detectors one after the other
 - Inward: track params at the primary vertex, no PID from outer detectors
 - Outward: extrapolation to outer detectors, full PID information
 - ◆ Refit: full PID info and optimal track parameters at the primary vertex

TPC tracking

- Seeding for Kalman filter:
 - SPDvertex + 2 clusters for primaries
 - 3 clusters for secondaries
- Inward extrapolation to next pad-row with update of best matching cluster
- Seeding repeated in different regions starting from 159-th to 64-th pad row
- After each tracking step best track is validated among tracks with large amount of shared clusters

Min number of crossed pad rows: 140 Min crossed pad rows/clusters: 0.8

Max chi2/cluster: 4

Max Distance of Closest Approach (DCA)

to the primary vertex: 3 cm

Max fraction of shared clusters: 0.5

TPC-ITS "global" tracking

- TPC tracks used as seeds for Kalman filter
- 2 iterations of inward layer to layer propagation: with and without SPD vertex constraint
- Hypotheses tree: at each layer the seed may be branched if multiple clusters match to seed extrapolation
- The seed may jump over layer without attaching the cluster (with certain constraints), but χ² is penalized if a hit was expected
- Final selection of winning candidate after simplified Kalman smoothing (inward-backward filters) according to length, χ² of track and its matching to TPC
- Optionally, cluster sharing can be allowed
- "On-the-fly" V0-decay reconstruction

ITS standalone tracking

- Useful for recovering :
 - Low-p_{τ} tracks (below ~150 MeV/c for π 's, below ~400 MeV/c for protons)
 - ◆ High-p_⊤ track (above a few GeV/c) lost in the dead zones between TPC sectors
- The procedure :
 - Seeds defined by SPDvertex + 2 clusters at the 2 innermost layers
 - Matching clusters are found on all layers within a "search road"
 - All combinations are fitted by Kalman filter and the best candidate is retained
 - lacktriangle Procedure repeated multiple times increasing road widths, trying to get low p_{τ} 's and secondaries
 - Cluster sharing is not allowed
- Two modes of running :
 - Complementary to the global tracking: using only the clusters left after the global TPC-ITS tracking
 - Completely standalone: all clusters are used (pp and p-A only)
 - Serves also for a data-driven evaluation of tracking efficiency and associated systematics

Strange particle decays

V₀ candidates :

- pairs of unlike-sign with DCA>0.5 (1.0) mm in pp (Pb-Pb)
- distance at Points of Closest Approach (PCA) between tracks < 1.5 σ
- cos(θ)>0.9 between pair momentum and vector connecting primary vertex and PCA

Cascade candidates :

- V₀ candidates with the mass matched to ~M_Λ
- bachelors satisfying their cuts on the DCA, PCA and pointing angle cos(θ)
- The decay vertex is put on the line connecting the PCAs, taking into account the reconstruction precision for the daughter tracks.
 - Optionally, a vertex can be fitted using full track covariance matrices

 π^{-}

hit

ITS,

Calibration and Alignment

Space-charge corrections in TPC

- Up to a few cm distortions changing with time
 A new correction map is provided every ~30 min
- Reconstruct TPC tracks with relaxed tolerances (applying "default distortion maps" if available)
- Match to ITS and TRD/TOF with relaxed tolerances
- Refit ITS-TRD-TOF part and interpolate to TPC as a reference of the true track position at every pad-row
- Collect Y, Z differences between distorted clusters and reference points in sub-volumes (voxels) of TPC
- Extract 3D vector of distortion in every voxel
- Create smooth parameterization (fast interpolation by Chebyshev polynomials) to use for corrections during the reconstruction

Global alignment with Millipede II

https://www.terascale.de/wiki/millepede_ii/

Blue: preparation of input data for PEDE II, processing of its output,

utilities for OCDB and geometry manipulation

Green: external PEDE II solver (Fortran 90 + OpenMP) supported by DESY

The track model depends on global (detector DOF's) and local (per a track) parameters ALICE central barrel case: up to ~27k DOFs

Part II: Run 3, ...

ALICE upgraded reconstruction

(Run 3)

- Readout rate in Pb-Pb : 0.5 kHz → 50 kHz
 - Low cross-section processes → large statistics required
- High comb. background → triggering is inefficient
- TPC drift time ~100 μs
 - ◆ ~5 Pb-Pb events in the drift volume
- ITS strobe length ~10 μs
 - Still, a few events per a "RO frame" in pp

Detector	Event Size After Zero Suppression (MByte)	Bandwidth @50 kHz Pb- Pb (GByte/s)
TPC	20.0	1000
TRD	1.6	81.5
ITS	8.0	40
Others	0.5	25
Total	22.9	1146.5

Continuous readout for upgraded TPC and ITS (See Serhiy Senyukov's talk on Tuesday)

(Quasi)online reconstruction

New challenges and strategies

(Quasi)online reco. using the Online-Offline (O2) farm

(CERN-LHCC-2015-006)

Reconstruction workflow in Run 3

- First Level Processors (FLP) receive continuous data from parts of detectors and perform local tasks like cluster-finding, mask creations etc.
- Each FLP chops the output data to SubTimeFrames (~20 ms long) and dispatches STF of the same time stamp to one of the Event Processing Nodes (EPN)
- EPN performs full TPC reconstruction to compress the data and partial (a few % only) reconstruction
 of other detectors to produce enough calibration data.

Aggregates STF to single TimeFrame (TF).

1500 EPNs → ~30 s of real time to process TF

- Calibration data of different EPNs aggregated, CCDB populated with calibration objects
- Final reconstruction in all detectors, matching, vertexing performed for each TF
- Compact AODs written per TF (up 1000 consecutive events in Pb-Pb @ 50kHz)
- AOD design will be aimed at storage minimization

Central reconstruction strategy in Run 3

The Run 1 and 2 (slide #5) strategy will not be possible anymore

- Z position of tracks in TPC is not fixed (continuous readout)
- Non-negligible residual TPC mis-calibration (large space-charge distortions)

Instead, we will perform:

- Preliminary primary vertex reconstruction using ITS
- Standalone tracking separately for TPC and ITS (sufficiently good, for the upgraded ITS)
- TPCtrack to ITStrack matching (not using the Z coordinate)
- TPC-seeded ITS tracking with unmatched TPC tracks and unused ITS clusters (secondaries)
- Reconstruction of the primary vertices using global tracks
- Secondary vertices and their association with the primary vertices ...

Standalone TPC tracking in Run 3

- Derived form the Run 2 High Level Trigger
 - 36 TPC sectors (159 padrows/sector) processed independently
 - Track seeding with Cellular Automaton
 - Track following with a simplified Kalman Filter within a sector
 - Track merging between sectors
 - Prolongation towards adjacent sectors, finding matching segments
 - Picking up additional clusters
 - Final refit with Kalman Filter
- Runs on GPUs (can be compiled for CPU as well)
 - Common for CPU and GPU source code in OpenMP / CUDA / OpenCL
 - ◆ 1 GPU replaces ~40 CPU cores @4.2 GHz (GTX 1080 vs Core i7 6700K)
 - Linear dependence of the processing time on cluster multiplicity
 - ◆ Processes 23 ms TimeFrames in ~20 s (O² farm has 1500 EPNs)
- Does not rely on the absolute Z-coordinate of clusters
 - ◆ Yet, the same efficiency and resolutions as the offline (primary tracks)
 - ◆ A little less efficiency for short low-p_⊤ secondaries
- Provides a considerable data-compression factor
 - ◆ ~9.1x noise removal, bits per charge and size, residuals, arithmetic coding
 - Additional rejection due to looper and highly-inclined track-segment removal

Standalone ITS tracking in Run 3

- Work-in-progress new development
 - Traditional Kalman Filter tracker
 - CPU, multi-threaded
 - Used for initial efficiency and resolution studies
 - Cellular Automaton tracker
 - Pattern recognition with Cellular Automaton (CPU & GPU)
 - Track fitting with Kalman Filter (CPU)
 - The main production tracker
- Both versions show similar efficiencies and resolutions
- ■Main problem : wrong cluster-to-track association at low p_T
 - Multiple scattering, fluctuations of energy losses...
- ●The GPU version is 2.5x 5x faster
 - The gain factor increases with the number of pileup vertices
- The CA tracker can be used for the on-line TPC calibration
 - ◆ Parameters tuned for high-p_⊤ tracks

The challenge of track-to-vertex association

- Preliminary primary vertex positions with the Inner Barrel of ITS
 - About 1 mm separation between vertices
 - Enough to initiate the standalone ITS tracking
- The vertex-fitting algorithms are the same as for Run 1 and 2
- The tracks to be associated are now of guite different quality :
 - Unmatched TPC tracks (σt~100 μs, σz~10 cm)
 - The time resolution comes from the TPC drift time
 - The "Z resolution" is just the size of the beam-beam interaction region
 - Unmatched ITS tracks (σt~10 μs, σz~10 μm)
 - The time resolution is defined by the strobe length
 - OK for vertexing in Pb-Pb
 - Matched ITS-TPC tracks (σt~100 ns, σz~10 μm)
 - The time resolution is given by (matching resolution in Z)/Vdrift
 - OK for vertexing in both Pb-Pb and pp
 - Matched ITS-TPC-TOF tracks (σt~1 ns, σz~10 μm)
 - Best for all collision systems and kinds of physics analysis
 - Relies on the PID information from TPC
 - Only ~60% of such tracks

- •All primary vertices will be reconstructed (at least, those having a couple of tracks above ~1 GeV/c)
- The charm and beauty vertexing capability will drastically improve
 - ◆ A factor 3 (5) better pointing resolution in XY (Z) at ~1 GeV/c
- More background for strange-particle decays
 - Track impact parameters much larger than an average separation between primary vertices
 - ◆ The TPC-only tracks will require checking of multiple interaction-time hypotheses (needed for calibrations)
- ●A certain fraction of tracks will remain un-associated (low p_T, secondary)

Conclusions

- The successful operation in Runs 1 and 2 has demonstrated ALICE's excellent tracking and vertexing capabilities
- From Run 3 on: A totally new computing model and reconstruction strategy
- Coming soon: completion of the new reconstruction software and detailed physics performance studies

Backup slides

Primary vertex estimation

Silicon Pixel Detector (SPD, two innermost layers of the ITS)

- Point of attraction for maximum number of tracklets (vectors defined by 2 SPD clusters)
- Track bending in the B field neglected

- Two algorithms
 - Vertexer3D : search in 3D fiducial envelope around luminous region)
 - VertexerZ: 1D search of attraction point along Z axis with subsequent fit of 3D coordinate (a fall-back if Vertexer3D failed)

- Used as a constraint to reduce combinatorics in subsequent track finding
- Tag pile-up repeating iteratively, each time removing clusters attributed to found vertices
- The first vertex (max. number of trackelts) is used as a measure of event multiplicity

Final primary vertex reconstruction

- Use global ITS+TPC and complementary ITS standalone tracks with at least 3 ITS hits
- Two alternative approaches sharing the same vertex fitter
 - For Pb-Pb (no pile-up in ITS), only one vertex is reconstructed
 - "outliers" removed by a cut on the DCA to the beam line
 - For pp and p-A, multiple vertices search
 - suppressing outliers by Tukey bi-weights
 - each vertex is found in iterative fit
 - tracks contributing to found vertex are removed and next vertex is searched
 - optionally, only tracks within the same Bunch Crossing (as measured by the TOF) can contribute to a given vertex
 - · optionally, a constraint by the size of the beam-beam interaction region

Open charm decays (D, D_s , Λ_c ...)

- Done at the physics analysis step
- Cuts similar to strange particle decays
 - DCA wrt the primary vertex
 - PCA between the daughter tracks
 - cos(θ) (pointing angle)
- Charm-specific cuts
 - ◆ d0k x d0π <~ -45000 μm
 - $|\cos(\theta^*)| < 0.8$ (decay angle in the rest frame)
 - Transverse projections of θ and decay length

Layout of the upgraded ITS

12.6 G-pixel camera (~10 m² of Si, ~13.6M CHF)

Detector performance (CERN-LHCC-2013-024, fast simulations)

The challenge of track-to-vertex association

An event with 35 MC and 29+4 reconstructed vertices (ITSU standalone, Pythia6 @ 14 TeV)

ALICE O² and **ALFA** framework

CERN-LHCC-2015-006, p. 75:

As shown in Fig. 7.1, the O2 software not only relies on general libraries and tools such as Boost [1], ROOT [2] or CMake [3], but also on 2 other frameworks called ALFA and FairRoot. ALFA is the result of a common effort of the ALICE and FAIR experiments to provide the underlying communication layer as well as the common parts for a multi-process system. The multi-process approach, rather than a purely multi-threaded one, is justified by the need for high-throughput parallelisation and the necessity to have a flexible and easy-to-use software framework. At the same time the system is fully capable of multi-threading within processes when required.

CERN-LHCC-2012-012

CERN-LHCC-2012-005

CERN-LHCC-2013-014

CERN-LHCC-2013-024

CERN-LHCC-2015-006

CERN-LHCC-2013-019

CERN-LHCC-2013-020

CERN-LHCC-2015-001