Pixel detector for CMS upgrade

Stella Orfanelli CERN VERTEX 2018

Outline

CMS Tracker Phase 2

Requirements, Layout & performance

Subsystems modules & mechanics

Novel technologies

Rad hard Sensors

RD53 chip

Serial powering

Light mechanics & CO₂ cooling

High b/w readout

Tracker Phase 2 Upgrade

Inner tracker Phase 2 requirements

Objective:

Maintain or improve tracking capability with 200PU

Increase granularity

Reduce material

Increase coverage

Challenges:

Unprecedented radiation levels for 3000 fb⁻¹

Increased hit rate (3.2 GHz/cm²),

trigger rate 750 kHz & latency 12.5 us

Multi-gigabit data transmission

Large on chip buffering

Innermost layer: $2.3x10^{16} n_{eq}/cm^2$ Outer & Service cylinder: $10^{15} n_{eq}/cm^2$

Innermost layer: 1.2 Grad

Outer & Service cylinder: 100Mrad

Inner tracker Phase 2 requirements

Objective:

Maintain or improve tracking capability with 200PU

Increase granularity

Reduce material

Increase coverage

Pixel Chip & Sensor 250 μm² : 2 billion pixels

Serial powering, CO₂ cooling, Light mechanics

New layout extended to $|\eta|=4$

Challenges:

Unprecedented radiation levels for 3000 fb⁻¹

10x Rad Hard Electronics & Sensors

Repairable/extractable detector

Increased hit rate (3.2 GHz/cm²),

trigger rate 750 kHz & latency 12.5 us

Multi-gigabit data transmission

Large on chip buffering

RD53 Pixel Chip 65 nm

Light Fast Readout Links

Optoelectronics & DAQ

14 CMS Inner Tracker

Simple mechanics

no turbines-tilted modules

Simple installation/removal

for potential replacement/repair of parts

Inner Tracker Layout: Extension to $|\eta| = 4$

Hybrid technology

Total active surface of ~4.9 m²
Optimization for production of 4k modules

Minimal number of different module types:

1x2 ROCs modules (inner parts)

2x2 ROCs modules (outer parts)

Inner Tracker Layout: Extension to $|\eta| = 4$

TBPX: 4 layers 4/5 modules per ladder

4 rings/disk 5 rings/disk Overlaps both in r and r-φ Hermetic coverage

Performance highlights

Improved resolution

Robust track finding performance

Improved efficiency in high pT jets

Reduced material budget

Closer look to TBPX, TFPX & TEPX

TBPX Mechanics

Layer 1@ 30 mm Both faces of ladders loaded with modules no $|\eta|=0$ projective gap

New way to split in 2 parts along z: 4 or 5 modules per layer (interleaved)

TBPX modules

High-Density Interconnect (HDI) to distribute signals and power to/from module

Simple module:

Pixel chip is the only active component

No auxiliary electronics

Passives: decoupling caps and connectors

Wire bonding

Prototype 2x2 HDI for RD53A chip (2018)

TFPX Dee

A ½ disk is composed of two Dees:

Odd dee: Ring 1+Ring 3 Even dee: Ring 2+Ring4

Modules of arranged on both sides of a dee-

"sandwitch" structure

TEPX Dee & Luminosity measurement

Recently proposed layout wrt baseline uses one type of modules (2x2)

Alternative assembly wrt TFPX under study:

A ½ disk is composed of two identical Dees:

Each Dee:

Front side: Ring 1+Ring 3+Ring 5

Back side: Ring 2+Ring4

Luminosity measurement

10% extra triggers provided to TEPX to provide online BX-by-BX LUMI measurement

TEPX D4-R1 dedicated to LUMI/ BKGD – requires independent operation

1/8 of TEPX system: 2 ½ disks

Novel technologies and methods

Pixel Sensors: R & D towards 1E16 range

Thin Planar n-in-p sensors:

Optimal d~100 - 150 $\mu m\text{-}$ lower signal unirradiated

Main challenges:

spark protection, limited space for structures, radiation

Small pitch pixel cells

Aspect ratio under study:

25x100 μm² (baseline)

50x50 μm²

3D sensor:

Option for TBPX L1/TFPX R1

Main challenge: complex fabrication

3D sensor

CMS sensors bump-bonded to RD53A chips allows to test to required radiation levels:

Light carrier board for irradiation campaigns (88 sensors) and tests beams in 2018-2019

Next generation pixel chip: RD53 chip

RD53A chip (½ size of final chip) Design features:

50 x 50 μm² pixels 3 AFE, 2 digital architectures **Shunt-LDO for serial power** 4***1.28 Gbps** output links – 1 ***160 Mbps** control link

Active test program:

Chip is fully functional

Meeting 500 Mrad tolerance specification

Could reach 1 Grad (controlled conditions)?

All AFE show good performance with radiation

Low Threshold < 1000e-

AFE review planned for Dec 2018
Working already on RD53B design
CMS final chip submission: Summer 2019

RD53A functional floorplan

Serial Powering of CMS pixel modules

Future pixel CMS detector requires ~50 kW on-detector power:

Increased number of channels and low voltage CMOS technology

Serial powering is the only viable solution for powering Phase 2 pixels:

- ✓ Low mass
- ✓ Integrated on-chip solution: Shunt-LDO regulators
- ✓ Radiation hard
- ✓ Not sensitive to voltage drops
- ✓ Smooth Operation with low noise

... never attempted before in a HEP experiment!

Across-module serial powering:

Iin "re-used" among loads in series
Total current constant- independent of actual I_{load}

Enough current injected to satisfy highest I_{load} Any extra current, not used by load, gets burnt by shunts

Modules/ sensors grounds differ inside a chain

Serial Powering: challenging system issues

CMS serial powering system parameters:

Up to 11 pixel modules serially powered – 3D sensor chains will be shorter Chips in a module (2 or 4) powered in parallel

~530 Serial power chains to power ~4k pixel modules

System test:
Successful operation of Serial power
chain of 8 single RD53A modules and 8
RD53A chips for HV studies (8x2)

Shunt-LDO integration & hotspot

A full size pixel chip (440x328 pixels) would require 1.62 A @1.5V under normal operating conditions

Two specialised 2.0 A Shunt-LDO regulators integrated on-chip, one per power domain

Each Shunt-LDO split in 4*0.5A blocks for heat distribution and reliability

Nominal value: 25% current margin creates hotspot NB! Cooling pipes below/close to Shunt-LDO hotspot

Picture of RD53A with thermal camera for lin=2.0A, Vin=1.45V (2.9W)

CMS pixel chip nominal power dissipation

Light Mechanics & CO₂

Light Carbon Fiber support structures

Low mass CO₂ evaporative cooling

removes heat generated on the module to operate sensors below -20°C

Cooling pipes below chip hotspots

Optimizing cooling parameters based on extensive thermal simulations

TBPX L1 cooling pipes driven below the chip hotspots

Example of TBPX L3 module thermal modelling

Sample TFPX Dee thermal simulation

High-B/W Readout chain

Up-links:

data from L1 accept, monitoring info to DAQ and control system

Down-links:

clock, trigger, commands, configuration data to modules

Up to 6 electrical up-links @1.28 Gb/s per module to LpGBT

Modularity depends on hit rate (location)
Efficient data formatting to reduce data rates (factor ~2)
25% bandwidth headroom on e-link occupancy

One electrical down-link @160 Mb/s per module from LpGBT

28 DTCs boards required for CMS IT:

Each DTC has two "half-DTC" FPGAs, each of which can receive up to 36 fibers. Each "half-DTC" would be capable of sending 200 Gbps to DAQ.

Optomodules & integration

Optomodule (aka portcard) designed in 2018:

2 Low-power Gigabit Transceiver (LpGBT)2 Versatile Link+ (VL+)powered by a pair of DC-DC converters

~750 optomodules to readout/control CMS IT

Optoelectronics limits (1E15 n/cm² fluence, 100 Mrad) impose their integration at higher radii

TFPX Optomodules located @outer radii of a Dee

Low mass Electrical links

~7k readout + 4k control differential electrical links (e-links)

AC- coupled e-links due to serial powered modules

Various e-link options investigated with simulations and tests:

Flex and twisted pair: 0.1 – 1m

Objective: Minimize mass for acceptable cable losses

Studying: Pre-emphasis, Cross coupling, Eye-diagrams

Alu flex measurement

Summary

Many challenges for Phase 2 pixel detector & many ongoing developments:

❖ New layout with extended forward coverage:

Ongoing TEPX layout under optimization incl. LUMI measurement

Electronics:

- Radiation hard ROC
- Demonstrator RD53A chip working, used for sensor R & D
- Preparing for final CMS pixel chip submission

Sensor R & D:

- Ongoing campaigns
- Investigating thin planar sensors structures, 3D for inner layer/ring, pixel aspect ratio

❖ Novel methods: Serial powering, CO₂ cooling, light stuctures, easy installation

Serial power chains of RD53A modules, thermal modelling of modules, first prototype structures

❖ New DTC board, optoboards and e-links development

Extra slides

CMS Phase 2 upgrades

Inner Tracker Layout- Baseline

Readout chain- protocols

RD53B timeline

RD53A Shunt-LDO Resistive model

Shunt-LDO designed to make power load look like resistor with voltage offset.

- Critical for appropriate current sharing between parallel chips and stable operation of serial powering.
- Power consumption variations inside chip not "visible" from outside.
- Shunt current dynamically regulated to keep chip current constant.

- Drop-out voltage (min 0.2V)
- Effective resistance
- Configurable offset
- Extra headroom is user's choice (10%, 20%, etc.)

Nominal operation of full size chip (400x328 pixels):

- Drop-out voltage of ~0.2V => Vin=1.4V
- Voffset=1V
- Current headroom ~25% (will be less in the final)
- R3 adapted such that Vin(4A/chip)=2.0V
 - R_{digi} = $(1.4V 1.0V) / (0.75A *125%) = 0.43<math>\Omega$
 - R_{ana} = $(1.4V 1.0V) / (0.6A *125%) = 0.53<math>\Omega$
 - Total chip Reg = 0.24Ω

RD53A Shunt-LDO regulator Designed by M. Karagounis

- 65 nm for lin= 2 A (FE-I4 version was 0.5 A).
- Resistive behavior allows for well-defined current sharing, determined by their effective resistance, which is configurable.
- Configurable offset, which allows an optimization of the power consumption in case of a failure of a chip in a module.
- Improved control loop to assure stability with capacitive loads (from increased logic).
- Off-chip decoupling capacitors (uF) needed for LDO stability at the input and the output of the circuit:
 - C_{in} = 6 uF shared among chips in parallel
 - C_{out} = 2.2 uF per Shunt-LDO (2 per chip)
- The reference and offset voltages are provided by on-chip integrated BANDGAPs (two bandgaps per Shunt-LDO)
 - Vref value can be trimmed using four trimbits.

Inner Tracker region

