Operational experience with the current tracker in ALICE

Luca Barioglio
University and INFN - Torino
on behalf of the ALICE Collaboration

The 27th International Workshop on Vertex Detectors
ALICE (A Large Ion Collider Experiment) is a general purpose heavy-ion experiment at the LHC

- Study of **strongly interacting matter**
- Study of the **Quark-Gluon Plasma** properties
The ALICE apparatus

- **ALICE** (A Large Ion Collider Experiment) is a general purpose heavy-ion experiment at the LHC
 - Study of strongly interacting matter
 - Study of the Quark-Gluon Plasma properties

- **Central Barrel**: pseudorapidity $|\eta| < 0.9$
 - **Tracking** in high density collisions:
 - $dN/d\eta \sim 2000$ in central Pb-Pb
 - **PID** (Particle IDentification):
 - dE/dx: ITS, TPC
 - Time of flight: TOF
 - Transition radiation: TRD
 - Cherenkov radiation: HMPID
 - **Low p_T reach**: ~ 0.1 GeV/c
 - Mild magnetic field $B = 0.5$ T
 - Low material budget: (10% X_0 for ITS+TPC)
The ALICE apparatus

- **ALICE (A Large Ion Collider Experiment)** is a general purpose heavy-ion experiment at the LHC
 - Study of **strongly interacting matter**
 - Study of the **Quark-Gluon Plasma** properties

- **Central Barrel**: pseudorapidity $|\eta| < 0.9$
 - **Tracking** in high density collisions:
 - $dN/d\eta \sim 2000$ in central Pb-Pb
 - **PID** (Particle IDentification):
 - dE/dx: ITS, TPC
 - Time of flight: TOF
 - Transition radiation: TRD
 - Cherenkov radiation: HMPID

- **Low p_T reach**: ~ 0.1 GeV/c
 - Mild magnetic field $B = 0.5$ T
 - Low material budget: (10% X_0 for ITS+TPC)
The Inner Tracking System

- **Six cylindrical layers** of silicon sensors
 - **Silicon Pixel Detector (SPD):** the two innermost layers
 - **Silicon Drift Detector (SDD):** the two intermediate layers
 - **Silicon Strip Detector (SSD):** the two outermost layers

- The ITS is used for:
 - **primary vertex** reconstruction (resolution better than 100 µm)
 - separation of primary and **secondary vertices**
 - **PID** and **tracking** at low p_T
 - **impact parameter** determination
 - **pileup** rejection
 - charged-particle **pseudorapidity distribution** determination
The Inner Tracking System

- Radial dimensions:
 - from 3.9 cm (close to beam pipe) to 43.0 cm (close to TPC inner wall)

- Material Budget (M.B.):
 - ~ 1% X_0

<table>
<thead>
<tr>
<th>Layer</th>
<th>Det</th>
<th>Radius (cm)</th>
<th>Length (cm)</th>
<th>Channels</th>
<th>Area (m²)</th>
<th>Resolution (µm)</th>
<th>M.B. (% X_0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>SPD</td>
<td>3.9</td>
<td>28.2</td>
<td>3.3 M</td>
<td>0.07</td>
<td>12 100</td>
<td>1.14</td>
</tr>
<tr>
<td>2</td>
<td>SPD</td>
<td>7.6</td>
<td>28.2</td>
<td>6.5 M</td>
<td>0.14</td>
<td></td>
<td>1.14</td>
</tr>
<tr>
<td>3</td>
<td>SDD</td>
<td>15.0</td>
<td>44.4</td>
<td>43 k</td>
<td>0.42</td>
<td>35 25</td>
<td>1.13</td>
</tr>
<tr>
<td>4</td>
<td>SDD</td>
<td>23.9</td>
<td>59.4</td>
<td>90 k</td>
<td>0.89</td>
<td></td>
<td>1.26</td>
</tr>
<tr>
<td>5</td>
<td>SSD</td>
<td>38.0</td>
<td>86.2</td>
<td>1.1 M</td>
<td>2.20</td>
<td>20 830</td>
<td>0.83</td>
</tr>
<tr>
<td>6</td>
<td>SSD</td>
<td>43.0</td>
<td>97.8</td>
<td>1.5 M</td>
<td>2.80</td>
<td></td>
<td>0.86</td>
</tr>
</tbody>
</table>
Operational experience with the current tracker in ALICE

Silicon Pixel Detector (SPD)

- 120 **Half-Stave (HS) modules**, grouped in two Half Barrels
 - each HS contains 2 **ladders**:
 - 1 sensor (200 µm thick) + 5 readout chips (150 µm thick)
 - **Hybrid pixel** sensors with binary output
 - p+n reverse biased (50V)
 - cell size 50 µm (rφ) x 425 µm (z)

- Each half-barrel divided into **10 half sectors**
 - 6 HS: 2 in Layer 1 + 4 in Layer 2

- C$_4$F$_{10}$ evaporative cooling system
Silicon Drift Detector (SDD)

- Two layers of 260 silicon drift modules (300 μm thick)
 - Layer 3: 14 ladders with 6 modules each
 - Layer 4: 22 ladders with 8 modules each
- 512 collection anodes (294 μm pitch)
- Drift HV: 1.8 kV
- Drift velocity: 6.7 μm/ns
- dE/dx measurement for PID
- MOS Injectors to monitor drift velocity
- Leak-tight water cooling
Silicon Strip Detector (SSD)

- 1698 silicon strip modules (300 µm thick)
 - Layer 5: 34 ladders with 22 modules each
 - Layer 6: 38 ladders with 35 modules each
- 768 double-sided strip sensors per module:
 - pitch \(r_\phi \): 95 µm; length: 40 mm; angle: 35 mrad
- \(dE/dx \) measurement for PID
- Leak-tight water cooling system + air dryer system

SSD barrel

SSD modules: silicon sensor + 2 hybrids with six HAL25 chips each
Excellent impact parameter resolution \((d_0) \):
- \(\sigma_{d_0} \approx 60 \text{ µm} \) at \(p_T = 1 \text{ GeV/c} \)
- Secondary vertex reconstruction

![Image of ALICE charged particles](ALICE-charged-particles.png)
![Image of ALICE Preliminary](ALICE-Preliminary.png)
ITS Physics Performance

- Excellent **track matching** between ITS and TPC
- Good **transverse momentum resolution**:
 \[
 \frac{\sigma_{p_T}}{p_T} = p_T \sigma_{1/p_T}
 \]
 - **ITS stand-alone** algorithm extends the \(p_T \) range down to 80÷100 MeV/c

![Graph showing ITS prolongation efficiency vs. \(p_T \) for ALICE, pp, \(s = 7 \text{ TeV} \)]

ALICE
- p-Pb, \(\sqrt{s_{NN}} = 5.02 \text{ TeV}, |\eta|<0.8 \)
 - TPC standalone tracks
 - TPC tracks constrained to vertex
 - TPC+ITS combined tracks
 - TPC+ITS constrained to vertex

\(\sigma_{|p_T|} = \sigma_1/|p_T| \)
Physics Performance

- **PID** for pure stand-alone ITS tracks
 - dE/dx vs momentum
 - K-π separation in the range $0.1 \div 0.45 \text{ GeV/c}$
 - K-p separation in the range $0.1 \div 1 \text{ GeV/c}$
First Level Trigger

- **Fast-OR**: at least one hit in a readout chip
- INPUT: 1200 bits every 100 ns from SPD to CTP
- OUTPUT: 10 programmable output based on boolean logic

Maximum latency at CTP input: 800 ns
• **Fast-OR** signals (100 ns time window)

• Online beam **background mitigation** with forward rapidity detectors

• Online **Past-future protection**: only events that are alone in the time window (7 bunch crossings)

• **HM selections**:
 ▸ Hits in Layer 1 ≥ threshold 1
 ▸ Hits in Layer 2 ≥ threshold 2
- **Low-multiplicity** events: 2 ÷ 4 tracks
- Veto with forward-rapidity detectors
- Fast-OR signal in mid-rapidity region
- **Topological trigger:**
 - **Opening angle** between the two cones
 - **Minimum** and **maximum** number of tracklets
• In some cases the detector acceptance has decreased due to specific problems in the subdetectors

• In Run2 of active modules are found to be stable:
 ▶ some modules excluded due to HV and readout problems

Acceptance (% modules)

<table>
<thead>
<tr>
<th></th>
<th>SPD</th>
<th>SDD</th>
<th>SSD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Run1</td>
<td>92</td>
<td>87</td>
<td>91</td>
</tr>
<tr>
<td>Run2 (2015-2016)</td>
<td>93</td>
<td>83</td>
<td>91</td>
</tr>
<tr>
<td>Run2 (2017)</td>
<td>93</td>
<td>82</td>
<td>91</td>
</tr>
<tr>
<td>Run2 (2018)</td>
<td>92</td>
<td>81</td>
<td>91</td>
</tr>
</tbody>
</table>
Loss of SPD modules in Run1

- In Run1 SPD suffered some losses due to **cooling problems**
 - The filters were **clogged**: they can only be accessed by removing the TPC!
- The filters were **drilled open**, using a cable
 - From February 2012 (63% active modules) to January 2014 (93% active models)
- Since the end of the drilling-campaign the number of modules in acquisition is stable

Before	After

Graph:
- Discovery of the problem
- Interventions on the system
- Sub-cooling installation
- Lab commissioning before installation
- First switch on in the cavern
- Restart after LHC forced shutdown
- New flow rate values
- Old flow rate values

<table>
<thead>
<tr>
<th>Sector number</th>
<th>Flow rate [g/s]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-9</td>
<td></td>
</tr>
<tr>
<td>2.1 g/s</td>
<td>1.8 g/s minimum value for total heat drain</td>
</tr>
<tr>
<td>1.8 g/s</td>
<td>2.1 g/s common setpoint</td>
</tr>
</tbody>
</table>
Loss of SDD modules in Run1

• The SDD suffered many losses during Run1

• During the installation of the detector, one half-ladder of layer 3 had some problem with the electronics

 ▪ Since then we could not communicate with these modules

• The beam was dumped close to ALICE and Layer 3 suffered from high radiation

 ▪ A lot of MOS injectors were lost

 ▪ Since then, HV and LV are off during INJECTION and ADJUSTMENT
SSD - Air dryer System

- For the SSD the **humidity** is an important factor
 - Air dryer system to keep the humidity under control

- In June 2015, a problem with increasing humidity led to **increasing leakage current**
 - can lead to permanent damages
 - Some interventions on the ventilation machine (DESSICA) to keep the conditions under control till the end of 2015

- **New machine** (SAMP) installed in April 2016, with following requirements:
 - **Absolute Humidity** (AH) range: 1 to 1.5 g/kgas
 - **Air quality**: Class 1000 (ISO6) filtering stage at the output of the machine
 - **Fixed Flow**: 350 m3/h (100 m3/h to the SSD)
Detector Control System (DCS)

- Each detector has its own **Detector Control System** (DCS) to control remotely the hardware
 - **New!** Standardisation and completion of high level procedures (related to BEAM SAFE status) for all detectors

- Each detector has specific **security operations**, according to past experience
 - **SPD**
 - Beam injection or adjustment → bias voltage to 2V and sensor not depleted
 - **SDD**
 - Beam injection or adjustment → HV and LV off, but readout electronics ready
 - After the accident with the beam, as precaution
 - **New!** LV crates can be remotely controlled with remote switch
 - **SSD**
 - HV and LV always at their nominal value → keep the conditions stable
Each detector has its own Experiment Control System (ECS) to perform specific operations, e.g. calibration.

Each detector has specific calibration strategy.

- **SPD**
 - Configuration performed only once followed by tuning
 - Noisy-pixel mask updated when a noisy pixel is detected
 - **New!** Pause And Reset (PAR) procedure implemented
 - To reduce the down time in case of failure

- **SDD**
 - Baseline, noise, gain and drift speed measured at the beginning of each physics fill with dedicated calibration runs

- **SSD**
 - Baseline and noise measured at the beginning of each physics fill with dedicated calibration runs
• ALICE runs at reduced
 ▸ the integrated dose of ITS is much lower than the other LHC experiments

<table>
<thead>
<tr>
<th>Detector (inner radius)</th>
<th>TID (krad)</th>
<th>1 MeV neq (cm⁻²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPD (r = 3.9 cm)</td>
<td>17.4</td>
<td>2.9 x 10¹¹</td>
</tr>
<tr>
<td>SDD (r = 15 cm)</td>
<td>1.5</td>
<td>3.6 x 10¹⁰</td>
</tr>
<tr>
<td>SSD (r = 38 cm)</td>
<td>0.34</td>
<td>1.6 x 10¹⁰</td>
</tr>
</tbody>
</table>

No increase in noisy channels and temperature, but increasing leakage current for some SPD Half Staves!
SPD operational performances

- A **slight increase** of the **leakage current** has been observed for some HSs
 - 8/9 belong to Layer 1 (higher dose)
- **Stable** number of **noisy pixels** and **temperature**
SDD operational performance

- The drift speed is stable
 - Measured during the calibration steps with the MOS injectors
 - The drift speed depends on the temperature:
 \[v_{\text{drift}} \propto T^{-2.4} \]
 - 0.1% resolution on \(v_{\text{drift}} \) to get the spatial resolution of \(\sigma_{r_{\phi}} = 35 \, \mu m \)

Temperature vs. mod. number - Run 294198

- Side 0
- Side 1

Drift speed vs. time for 2017 and 2018
SDD operational performance

- The **drift speed** is **stable**
 - Measured during the calibration steps with the MOS injectors
 - The drift speed depends on the temperature:
 \[v_{\text{drift}} \propto T^{-2.4} \]
 - **0.1% resolution** on \(v_{\text{drift}} \) to get the spatial resolution of \(\sigma_{r\phi} = 35 \, \mu\text{m} \)

- **Noise level** is **low** and **stable**
SSD operational experience

- SSD acceptance **stable**
 - Minor issue related to JTAGs
 - Solved improving cable connections
- Fraction of bad strips:
 - Layer 5:
 - n-side: 10%
 - p-side: 8.7%
 - Layer 6:
 - n-side: 9.2%
 - p-side: 8.2%
SSD – SEU in the FEROM and LV board

- The **Front-End ReadOut Modules** (FEROM) are close to the interaction region
 - exposed to radiation, that can change a bit of information (**Single-Event Upset**)
 - SEU were not expected, due to the presence of a concrete shield
SSD – SEU in the FEROM and LV board

- The Front-End ReadOut Modules (FEROM) are close to the interaction region
 - exposed to radiation, that can change a bit of information (Single-Event Upset)
 - SEU were not expected, due to the presence of a concrete shield

- 7 SEUs recorded in RUN1 → some measures adopted:
 - Radiation tolerant PROM
 - Firmware upgrade → faster FPGA reload
SSD – SEU in the FEROM and LV board

- The **Front-End ReadOut Modules (FEROM)** are close to the interaction region
 - exposed to radiation, that can change a bit of information (**Single-Event Upset**)
 - SEU were not expected, due to the presence of a concrete shield

- 7 SEUs recorded in **RUN1** → some measures adopted:
 - Radiation tolerant PROM
 - Firmware upgrade → faster FPGA reload

- **SEU** statistic in **RUN2**
 - 2015: 8 (ALICE $L_{\text{INT}} = 6.8 \text{ pb}^{-1} (\text{pp}) + 433 \text{ }\mu\text{b}^{-1} (\text{Pb-Pb}))$
 - 2016: 21 (ALICE $L_{\text{INT}} = 13.4 \text{ pb}^{-1} (\text{pp}) + 43.3 \text{ nb}^{-1} (\text{p-Pb}))$
 - 2017: 20 (ALICE $L_{\text{INT}} = 19.2 \text{ pb}^{-1} (\text{pp}))$
 - **2018**: 20 (ALICE $L_{\text{INT}} \sim 25.4 \text{ pb}^{-1} (\text{pp}))
- The ITS was almost always available during the ALICE running time
- ITS caused 10% of the detector-caused End Of Runs (EOR)

<table>
<thead>
<tr>
<th>Availability</th>
<th>SPD</th>
<th>SDD</th>
<th>SSD</th>
</tr>
</thead>
<tbody>
<tr>
<td>% of 2017 ALICE running time</td>
<td>99.9</td>
<td>99.5</td>
<td>100</td>
</tr>
<tr>
<td>% of 2018 ALICE running time</td>
<td>99.6</td>
<td>99.8</td>
<td>99.8</td>
</tr>
</tbody>
</table>
Summary and Conclusions

- The ALICE Inner Tracking System is currently working smoothly, providing a physics performance in agreement with the design requirements.

- In the current year there were no major issues, just ordinary maintenance of the detector.

- The detector is showing some effects of ageing that do not influence the physics performance.

- During Long Shutdown 2, which will start at the end of this year, the current ITS will be dismissed and completely replaced by a new tracker equipped with 7 monolithic pixel layers:
 - Silicon tracker detector for the ALICE upgrade, by Serhiy Senyukov on Tuesday 23, 17:30
 - Tracking and vertexing in the ALICE experiment at the LHC, by Iouri Belikov on Wednesday 24, 15:15
Summary and Conclusions

• The ALICE Inner Tracking System is currently working smoothly, providing a physics performance in agreement with the design requirements.

• In the current year there were no major issues, just ordinary maintenance of the detector.

• The detector is showing some effects of ageing that do not influence the physics performance.

• During Long Shutdown 2, which will start at the end of this year, the current ITS will be dismissed and completely replaced by a new tracker equipped with 7 monolithic pixel layers:

 ▶ Silicon tracker detector for the ALICE upgrade, by Serhiy Senyukov on Tuesday 23, 17:30

 ▶ Tracking and vertexing in the ALICE experiment at the LHC, by Iouri Belikov on Wednesday 24, 15:15

Thank you for your attention!