Diamond Detector Development and Plans: RD42 Results and Status

Harris Kagan
Ohio State University
for the RD42 Collaboration

Vertex 2018
Chennai, India
October 21, 2018

Outline of Talk

- Introduction – Motivation, Diamond Detectors, RD42
- Radiation Tolerance
- Rate Studies
- Device Development – Test beam results of 3D diamond pixel devices
- Device Development – HL-LHC beam monitoring and abort (BCM')
- Summary
Introduction - Motivation

Present Situation:
 • Innermost layers \rightarrow highest radiation damage (\sim100’s MHz/cm2)
 • Current detectors designed to survive \sim12 months in HL-LHC
 \rightarrow R&D for more radiation tolerant detector designs and/or materials

Diamond as a Detector Material:
 • Properties:
 radiation tolerance
 insulating material
 high charge carrier mobility
 Smaller signal than in same thickness of silicon

RD42 work:
 • Investigate signals and radiation tolerance in various detector designs:
 pad \rightarrow full diamond as a single cell readout
 pixel \rightarrow diamond sensor on pixel chips
 3D \rightarrow strip/pixel detector with design to reduce drift distance
Introduction - The 2018 RD42 Collaboration

The 2018 RD42 Collaboration

A. Alexopoulos3, M. Artuso20, F. Bachmair24, L. Bāni24, M. Bartosik3, J. Beacham13, H. Beck23, V. Bellini2, V. Belyaev12, B. Bentele19, P. Bergonzo11, A. Bes27, J-M. Brom7, M. Bruzzi4, G. Chiodini26, D. Chren18, V. Cindro9, G. Claus7, J. Collot27, J. Cumalat19, A. Dabrowski3, R. D’Alessandro4, D. Dauvergne27, W. de Boer10, S. Dick13, C. Dorfer24, M. Dunser3, G. Eigen30, V. Eremin6, J. Forneris15, L. Gallin-Martel27, M.L. Gallin-Martel27, K.K. Gan13, M. Gasta3, C. Giroletti17, M. Goffe7, J. Goldstein17, A. Golubev8, A. Gorišek9, E. Grigoriev8, J. Grosse-Knetter23, A. Grummer21, M. Guthoff3, B. Hiti9, D. Hits24, M. Hoeferkamp21, T. Hofmann3, J. Hosslet7, J-Y. Hostachy27, F. Hüggling1, C. Hutton17, J. Janssen1, H. Kagan13, K. Kanxheri28, G. Kasieczka24, R. Kass13, M. Kis5, G. Kramberger9, S. Kuleshov2, A. Lacoste27, S. Lagomarsino4, A. Lo Giudice15, E. Lukos25, C. Maazouzi7, I. Mandic9, A. Marino19, C. Mathieu7, M. Menichelli28, M. Mikuz9, A. Morozzi28, J. Moss29, R. Mountain20, S. Murphy22, M. Muškinja9, A. Oh22, P. Olivero15, D. Passeri28, H. Pernegger3, R. Perrino26, F. Picollo15, M. Pomorski11, R. Potenza2, A. Quad23, F. Rarbi27, A. Re15, M. Reichmann24, G. Riley25, S. Roe3, D. Sanz24, M. Scarringella4, D. Schaefer3, C. Schmidt5, E. Schioppa3, S. Schnetzer14, S. Sciortino4, A. Scorzoni28, S. Seidel21, L. Servoli28, D.S. Smith13, B. Sopko18, V. Sopko18, S. Spagnolo26, S. Spanier29, K. Stenson19, R. Stone14, B. Stugu30, C. Sutera2, M. Traeger5, D. Tromson11, W. Trischuk16, C. Tuve2, J. Velthuis17, N. Venturi3, E. Vittone15, S. Wagner13, R. Wallny24, J.C. Wang20, J. Weingarten23, C. Weiss3, N. Wermes1, M. Yamouni27, J. Zalieckas30, M. Zavrtanik9

1 Universitàt Bonn, Bonn, Germany
2 INFN/University of Catania, Catania, Italy
3 CERN, Geneva, Switzerland
4 INFN/University of Florence, Florence, Italy
5 GSI, Darmstadt, Germany
6 Ioffe Institute, St. Petersburg, Russia
7 IPHC, Strasbourg, France
8 ITEP, Moscow, Russia
9 Jožef Stefan Institute, Ljubljana, Slovenia
10 Universität Karlsruhe, Karlsruhe, Germany
11 CEA-LIST Technologies Avancées, Saclay, France
12 MEPHI Institute, Moscow, Russia
13 The Ohio State University, Columbus, OH, USA
14 Rutgers University, Piscataway, NJ, USA
15 University of Torino, Torino, Italy
16 University of Toronto, Toronto, ON, Canada
17 University of Bristol, Bristol, UK
18 Czech Technical University, Prague, Czech Republic
19 University of Colorado, Boulder, CO, USA
20 Syracuse University, Syracuse, NY, USA
21 University of New Mexico, Albuquerque, NM, USA
22 University of Manchester, Manchester, UK
23 Universität Gottingen, Gottingen, Germany
24 ETH Zürich, Zürich, Switzerland
25 University of Tennessee, Knoxville, TN, USA
26 INFN-Lecce, Lecce, Italy
27 LPSC-Grenoble, Grenoble, Switzerland
28 INFN-Pergugia, Pergugia, Italy
29 California State University - Sacramento, CA, USA
30 University of Bergen, Bergen, Norway

123 participants
30 institutes
Introduction – Diamond as a Particle Detector

- Diamond detectors are operated as ionisation chambers
- Metalisation on both sides
 - Plate
 - Strip (used for presented beam test results)
 - Pixel
- Readout with low noise electronics

sCVD diamond with strip metalisation and amplifier
Radiation Tolerance
Test Beam Setup

- characterization of irradiated devices in test beams
- transparent or unbiased hit prediction from telescope
- tracking precision at detector under test: \(\sim 2-3 \mu m \)
Radiation Tolerance - Analysis Strategy

- Measure signal response as a function of predicted position
 - Direct measurement of charge collection distance (CCD)
 - CCD = average distance e-h pairs drift apart under E-field
- Convert CCD to mean free path (MFP) - assume ~same MFP for e,h

\[\frac{ccd}{t} = \sum_i \frac{mfp_i}{t} \left[1 - \frac{mfp_i}{t} \left(1 - e^{-\frac{t}{mfp_i}} \right) \right] \]

- Damage equation: \(n = n_0 + k\phi \)
 \[\downarrow \quad \downarrow \]
 \[\frac{1}{mfp} = \frac{1}{mfp_0} + k\phi \]

 n number of traps
 n₀ initial traps in material
 k damage constant
 \(\phi \) fluence
 \(\lambda \) MFP
 \(\lambda_0 \) initial MFP

- Fit in \(1/\lambda \) (=1/mfp) vs \(\phi \) space
Radiation Tolerance - Analysis Strategy

Example - 800 MeV protons

- Plot single-crystalline and polycrystalline on same graph
- Fit in $1/\lambda$ vs ϕ space
- Damage constant (=slope) for single-crystal and poly the same
- Do the same for all energies, species
Summary of Radiation Tolerance Study
Combined Damage Curve

- Obtained radiation damage constants are compared to 24 GeV protons
- Combined damage curve
 - Shift pCVD sample by
 \[\varphi_0 = \frac{1}{\lambda_0 k} \]
 - Scale fluence by relative \(k \)
 \[\phi_{eq.} = \frac{k_i}{k_{24 \text{ GeV protons}}} \times \phi_i \]

<table>
<thead>
<tr>
<th>Particle Species</th>
<th>Relative Damage Constant, (\kappa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>24 GeV p</td>
<td>1</td>
</tr>
<tr>
<td>800 MeV p</td>
<td>1.54 ± 0.13</td>
</tr>
<tr>
<td>70 MeV p</td>
<td>2.5 ± 0.4</td>
</tr>
<tr>
<td>25 MeV p</td>
<td>4.5 ± 0.6</td>
</tr>
<tr>
<td>fast neutrons</td>
<td>4.5 ± 0.5</td>
</tr>
</tbody>
</table>
Radiation Tolerance - Shape Analysis

Signal Shape Analysis

- Study the shape of the pulse height distribution after irradiation (5/10 algorithm)
- Use the ratio FWHM/MP which is a measure of the uniformity of the material
- 800 MeV proton irradiated
 - pCVD samples
 - linear decrease of FWHM/MP
 - scCVD samples
 - Smaller initial relative width
 - linear increase towards same value
- See similar results for other irradiation energies, species
Rate Studies
Rate Studies in pCVD diamond

- Done at PSI - 3 yrs ago published rates up to 300kHz/cm²
- 2 years ago w/new electronics, rates up to 10-20MHz/cm²
- Last year measured rate up to fluence of 4×10^{15}n/cm²
- Pad detector tested in ETH-Z telescope (uses CMS Pixels)
- Electronics is prototype for HL-LHC BCM/BLM

19.8ns bunch spacing clearly visible
Rate Studies in pCVD diamond

Last year rates up to 10MHz/cm^2 + doses to $4\times10^{15}\text{n/cm}^2$

No rate dependence observed in pCVD up to 10-20MHz/cm^2
No rate dependence observed in pCVD up to $4\times10^{15}\text{n/cm}^2$
No absolute pulse height and noise calibration yet
Now extending dose to 10^{16}n/cm^2 then 10^{17}n/cm^2
Device Development: 3D diamond pixel detectors
3D Device in pCVD Diamond

After large radiation fluence all detectors are trap limited
 • Mean free paths $\lambda < 50\mu m$
 • Need to keep drift distances (L) smaller than mfp (λ)

Comparison of planar and 3D devices

Can one do this in pCVD diamond?

Have to make resistive columns in diamond for this to work
 - columns made with 800nm femtosecond laser
 - initial cells 150$\mu m \times 150\mu m$; columns 6μm diameter
3D Device in pCVD Diamond

Femtosecond laser converts insulating diamond into resistive mixture of various carbon phases: amorphous carbon, DLC, nano-diamond, graphite.

- Initial methods had 90% column yield → now >99% yield with Spatial Light Modulation (SLM)
- Initial column diameters 6-10μm → now 2.6μm (with SLM)
Simultaneously readout all 3 devices

Three years ago we showed the results in scCVD diamond
- Compared scCVD strip detector (500V) with 3D (25V)

Two years ago the first 3D device in pCVD diamond
- Compare pCVD strip detector (500V) with 3D (60V)

Last year the first 3D pixel detectors in pCVD diamond
This year 50µm x 50µm 3D cells read out w/ ATLAS, CMS electronics
3D Device in pCVD Diamond

- Measured signal (diamond thickness 500μm):
 - Planar Strip ave charge
 6,900e or ccd=192μm
 - 3D ave charge
 13,500e or ccd$_{eq}$=350-375μm
- For the first time collect >75% of charge in pCVD

3D cell size: 150μm x 150μm
3D Device in pCVD Diamond

- Measurements consistent with TCAD simulations:
 - Large cells, large diameter columns → lower field regions in saddle points

- Cell size: 150μm x 150μm
- Voltage: 25V

Device worked well enough to construct first pCVD 3D diamond pixel device

from: G. Forcolin, Ph.D. Thesis
Manchester University 2017
First 3D pixel device in pCVD (2017) - [150μm x 100μm cells]

- Produced cells with 150μm x 100μm size for CMS pixel readout chip
- Cleaning, photolithography, metal contact to pixel and bias - RD42
- Bump and wire bonding - Princeton
Results of CMS, ATLAS 3D pCVD Pixel Devices

3D Diamond Pixel
98.5% efficiency

- applied voltage: -55V
- pixel threshold: 1500e
- efficiencies flat in time

Planar Silicon Pixel (ref)
99.3% efficiency

- lower efficiency in diamond
 most likely due to low field regions

RD42 Preliminary
threshold 1500e
hit efficiency 98.5%

RD42 Preliminary
threshold 1500e
hit efficiency 99.3%

(a) efficiency maps (b) hit efficiencies
Produced 7200 cell pixel prototype w/50μm x 50μm pitch

- Three fabricated:
 - Oxford 2 complete
 - Manchester 1 complete
- 50μm x 50μm cells ganged for CMS (3x2) and ATLAS (1x5)
- Metallization
 - CMS complete
 - ATLAS complete
- Bump bonding
 - CMS @Princeton complete
 - ATLAS @IFAE complete
- First one (CMS) tested in Aug 2017 Test Beam @PSI
Preliminary Results (50μm x 50μm cells)

- Readout with CMS pixel readout
 6 cells (3x2) ganged together
- Preliminary efficiency >99.2%
- Collect >90% of charge!

Applied voltage ~55V
Threshold 1500e
Hit efficiency >99.2%
Results of CMS, ATLAS 3D pCVD Pixel Devices

50µm x 50µm 3D ATLAS pixels

- Readout w/FE-I4 pixel readout
- 5 cells (1x5) ganged
- Tested @ CERN Oct 2018
- Worked well, awaiting results
Device Development: HL-LHC BCM’
Device Development: HL-LHC BCM’

Present ATLAS BCM suffers from abort-lumi incompatibility
• Abort thresholds can not be set higher without abandoning lumi
• Fast timing needed for abort lowers S/N thus limiting lumi stability

Separate functions at the HL-LHC
• Two fast devices from sensor to off-detector
• Keep as much commonality as possible
• 4 stations/side with abort, lumi-BCM’, BLM

Requires new sensor geometry and appropriate electronics
Initial Sensor Design Idea

- Build some dynamic range into sensor ✓
 - pad sizes from 1mm²-32mm² work well
- Compare 300µm vs 500µm thick sensors - in progress
 - 500µm thick sensors work well
- Test wire bonding sensor to chip ✗
 - lose sensitivity of small pads - bump bond instead
- Test with existing RD42 fast electronics ✓

Prototype test with 9.2 MHz/cm² @PSI

19.8ns bunch spacing clearly visible
New Sensor Design Idea

- Build some dynamic range into sensor
 - pad sizes from 1mm\(^2\)-32mm\(^2\) work well
- Bump bond diamond to electronics to reduce capacitance
- Use TSMC 65nm technology for increased gain-bandwidth
Device Development: HL-LHC BCM'

Electronics Design Path
• First version of preamp layout and simulations
Device Development: HL-LHC BCM’

Electronics Design Path
- First version of preamp layout and simulations
- Test in H6a@CERN last week

Lumi Preamp

Abort Preamp

100μm

285μm
Electronics Design Path

- Start with RD42 fast amp used in rate studies
 - designed in 130nm technology
 - risetime 3-6ns; baseline recovery time 12-18ns
 - noise for 2pf input: 550e
- Design 2 preamps to achieve large dynamic range
 - lumi sensitivity to MIPs at 7ke
 - abort threshold for safety at 25k-7.5M MIPS/cm²
 - electronics dynamic range 100:1
 - risetime 1-2ns; return to baseline (<2%) 12ns
- Optimize gain and speed vs SNR for lumi, abort separately
 - tune parameters based on beam tests
- End with 8 channel amp (4 lumi, 4 abort) in 65nm

Chip Submitted May 21, 2018, back Aug 24, 2018, TB Oct 2018
Summary of RD42 Work

Lots of progress in diamond with HL-LHC in view

- Quantified understanding of radiation and rate effects
 - pCVD shows no rate effect up to 20MHz/cm², 4x10¹⁵n/cm² @1000V
 - Irradiate devices to 10¹⁷ this year, continue rate studies to 10¹⁶

- 3D detector prototypes made great progress
 - 3D works in pCVD diamond
 - Scale up (x70) worked; continue scale up (x10) this year
 - Smaller cells (50µm x 50µm) worked; test smaller cells (25µm)
 - Thinner columns (2.6µm) worked; try 2.0µm for 25µm x 25µm cells

- 3D diamond pixel devices being produced
 - All work as expected; just tested 50µm cells irrad@3.5x10¹⁵p/cm²
 - Visible improvements with each step
 - Efficiencies look good, still a bit to be understood

- BCM' design underway
Acknowledgements

The RD42 Collaboration gratefully acknowledges the staff at CERN for test beam time and their help in setting up beam conditions. We would also like to thank the beam line staff at the PSI High Intensity Proton Accelerator. The research leading to these results received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement No. 654 168. This work was also partially supported by ETH Grant ETH-51 15-1, Swiss Government Excellence Scholarship ESKAS No 2015-0808, Royal Society Grant UF120106, STFC Grant ST/M003965/1 and U.S. Department of Energy Grant DE-SC0010061.