RADIATION HARDNESS FOR RD53

Luis Miguel Jara Casas on behalf of the RD53 collaboration
OUTLINE

1. Introduction
2. RD53A chip
3. Radiation tolerance
4. TID Radiation test results with RD53A
 1. Power measurements
 2. Analog front end measurements
 3. Ring oscillator measurements
5. Single Event Upsets
6. Conclusions and next plans
1. INTRODUCTION

- The RD53 collaboration [1] is a joint effort between ATLAS and CMS communities.
- For the design of the pixel readout chips for the innermost layers of particle trackers at future HL-LHC for high energy physics experiments.
- RD53A goals:
 - Comprehensive understanding of radiation effects in the 65 nm technology chosen [2].
 - The development of tools and methodology to efficiently design large complex mixed signal chips
 - Development and characterization of a full size readout chip featuring a 400×400 pixel array with 50 µm pitch
- Conformed by 24 institutions from Europe and USA
2. RD53A CHIP

- The RD53A is intended to demonstrate, in large format IC, the suitability of the chosen 65nm CMOS technology for the innermost layers of particle trackers for the HL-LHC upgrades of ATLAS and CMS.
- RD53A is not intended to be a final production chip.
- It will form the basis for production chips of ATLAS and CMS.
- It contains design variations for testing purposes:
 - Three analog front-end flavours
 - Two digital readout architectures
- Submitted at the end of August 2017 in a shared engineering run with CMS MPA and other test chips for cost sharing (12"").
2. RD53A CHIP

RD53A functional floorplan

400 columns x 192 rows

Digital Chip Bottom (DCB)

Analog Chip Bottom (ACB)

Padframe
2. RD53A CHIP

Front-end flavours in RD53A

• 3 Analog Front-end flavours: Synchronous, Linear and Differential.
• Each analog front-end flavour takes almost one third of the matrix.
• More details in Lino Demaria’s talk: https://indico.cern.ch/event/710050/contributions/3161658/ (Thursday 25th)
3. RADIATION TOLERANCE

- RD53A was designed with a guarantee of meeting specs at 500 Mrad by making and using simulation models and treating radiation damage as an additional corner in the design.

- 200Mrad and 500Mrad simulation models were developed to ‘predict’ the circuit behaviour during design phase.

- Significant radiation damage above 100Mrad:
 - Analog: transconductance, Vt shift:
 - Analog design guidelines:
 - Wp ≥ 300nm
 - Lp ≥ 120nm
 - Ln ≥ 120nm
 - Digital: speed degradation.

- Extensive radiation campaigns have been carried out to qualify the technology:
 - Prototypes of all IPs and Front-ends, small scale demonstrators: FE65_P2, Chipix 65.
 - DRAD chip [3]: test to study the effects on standard cells.
3. RADIATION TOLERANCE

DESCRIPTION OF THE STANDARD CELLS INCLUDED IN EACH LIBRARY

<table>
<thead>
<tr>
<th>Standard Cell</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>INVD1</td>
<td>Inverter with driving strength = 1</td>
</tr>
<tr>
<td>INVD4</td>
<td>Inverter with driving strength = 4</td>
</tr>
<tr>
<td>ND2D1</td>
<td>2-input NAND gate with driving strength = 1</td>
</tr>
<tr>
<td>ND4D1</td>
<td>4-input NAND gate with driving strength = 1</td>
</tr>
<tr>
<td>NOR2D1</td>
<td>2-input NOR gate with driving strength = 1</td>
</tr>
<tr>
<td>NOR4D1</td>
<td>4-input NOR gate with driving strength = 1</td>
</tr>
<tr>
<td>XOR2D1</td>
<td>2-input XOR gate with driving strength = 1</td>
</tr>
<tr>
<td>CKBD1</td>
<td>Clock buffer with driving strength = 1</td>
</tr>
<tr>
<td>CKBD4</td>
<td>Clock buffer with driving strength = 4</td>
</tr>
<tr>
<td>CKBD16</td>
<td>Clock buffer with driving strength = 16</td>
</tr>
<tr>
<td>DFCNQD1</td>
<td>Flip-Flop, asynchronous clear and driving strength = 1</td>
</tr>
<tr>
<td>LHCNQD1</td>
<td>Latch, asynchronous clear and driving strength = 1</td>
</tr>
</tbody>
</table>

Standard cells for each library in DRAD chip

![Schematic of ring oscillator/delay chain test](image)

Structure to test

\[T_d \propto \frac{N}{f} \]

\(T_d = \text{Time delay of the gate} \)

\(N = \text{number of gates} \)

Schematic of ring oscillator/delay chain test structure and input/output signals used to measure the time delay of the standard cell.
3. RADIATION TOLERANCE

• RD53A was designed with a guarantee of meeting specs at 500 Mrad by making and using simulation models and treating radiation damage as an additional corner in the design.

• 200Mrad and 500Mrad simulation models were developed to ‘predict’ the circuit behaviour during design phase.

• Significant radiation damage above 100Mrad:
 o Analog: transconductance, Vt shift:
 ▪ Analog design guidelines:
 ✓ Wp≥300nm
 ✓ Lp ≥120nm
 ✓ Ln ≥ 120nm
 o Digital: speed degradation.

• Extensive radiation campaigns have been carried out to qualify the technology:
 o Prototypes of all IPs and Front-ends, small scale demonstrators: FE65_P2, Chipix 65.
 o DRAD chip [3]: test to study the effects on standard cells.

<table>
<thead>
<tr>
<th>Library</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>7T_HVT</td>
<td>7-tracks, High Vt, foundry library Wp ≥150nm, Wt ≥ 150 nm, L = 60nm</td>
</tr>
<tr>
<td>9T_HVT</td>
<td>9-tracks, High Vt, foundry library, Wp ≥210nm, Wt ≥ 190 nm, L = 60nm</td>
</tr>
<tr>
<td>9T_NVT</td>
<td>9-tracks, Normal Vt, foundry library, Wp ≥210nm, Wt ≥ 190 nm, L = 60nm</td>
</tr>
<tr>
<td>9T_NVT_2W</td>
<td>9-tracks, Normal Vt, modified width: Wp ≥300nm, Wt ≥ 190 nm, L = 60nm</td>
</tr>
<tr>
<td>12T_HVT</td>
<td>12-tracks, High Vt, custom: Wp ≥ 700nm, Wt ≥ 390 nm, L = 60nm</td>
</tr>
<tr>
<td>12T_NVT</td>
<td>12-tracks, Normal Vt, custom: Wp ≥ 700nm, Wt ≥ 390 nm, L = 60nm</td>
</tr>
<tr>
<td>12T_LVT</td>
<td>12-tracks, Low Vt, custom: Wp ≥ 700nm, Wt ≥ 390 nm, L = 60nm</td>
</tr>
<tr>
<td>12T_NVT_2L</td>
<td>12-tracks, Normal Vt, custom: Wp ≥ 920nm, Wt ≥ 410 nm, L = 130nm</td>
</tr>
<tr>
<td>18T_LVT</td>
<td>18-tracks, Low Vt, ELT transistors Wp ≥ 3740nm, Wt ≥ 1420nm, L = 60nm</td>
</tr>
</tbody>
</table>

Libraries studied in DRAD chip

The height of the libraries are 1.4μm in 7T, 1.8μm in 9T, 2.4μm in 12T and 3.6μm in 18T.
3. RADIATION TOLERANCE

500 Mrad cold vs room T

Room temperature and high temperature annealing with BIAS

- Delay degradation of standard cells is much smaller when irradiation is done cold.
- Annealing at room temperature and with bias ‘heals’ part of the damage caused by irradiation, but high temperature annealing (~100°C) with bias degrades the speed of the standard gates.
When annealing is carried out without powering the chip, no significant gate delay degradation increase is seen.

In conclusion, control of environmental conditions in the real experiment is crucial, and annealing history becomes very significant.
200Mrad and 500Mrad simulation models were developed by the radiation working group of the RD53 collaboration to ‘predict’ the circuit behaviour during design phase, based on fits to single transistor data.

Models use worst case bias conditions but not high temperature annealing.

The ring oscillators in DRAD chip were simulated with these models: the models are more pessimistic than measurements.

The models were also used to simulate and assess the radiation hardness of RD53A.

Conclusion: 9-Track Normal Vt library is adequate for both pixel array and chip bottom.
4. RADIATION FACILITIES IN OUR COMMUNITY

- Irradiation needs to be wide enough to cover the whole chip with a uniform dose.
- The size of the chip makes this task difficult and slow (500Mrad tests are long).
- Most of the tests up to now have been done at high dose rate (order of Mrads/h).
- All the measurements shown in this presentation are done with chips without sensors.
- Results shown in this presentation were obtained at **high dose rate** (about 4Mrad/h) and **low temperatures** (-20°C) in radiation facilities among our community. **No annealing is included** in the results, which should bring some improvements if not done at high temperature and with bias.
4.1. POWER MEASUREMENTS

- Serial powering is the baseline choice for powering the ATLAS and CMS HL-LHC pixel detectors (see implications of this choice in tomorrow’s talks on pixel detector for ATLAS and CMS upgrades)
- RD53A has two power domains (digital and analog), two ShuntLDOs providing VDDA and VDDD
- RD53A can also be configured to be powered in direct powering mode or LDO mode.
- No significant changes in power consumption were seen during irradiation up to 600Mrad in direct powering mode (only changes related to the different configuration of the chip):
4.2. ANALOG FE MEASUREMENTS

• Three different analog FE in RD53A for testing purposes.
• Results shown concern chip without sensor, generating the analog test pulse via the calibration injection circuit.
• This analog test pulse is derived from 2 defined DC voltages (CAL_HI and CAL_MED) distributed to all pixels, and a third level (local GND)
• Same injection circuit adopted for the three analog FEs.

NOTE! All values in electrons reported in the presentation have a 15-20% uncertainty due to injection capacitance and calibration level variations between chips
4.2. ANALOG FE MEASUREMENTS: SYNCHRONOUS FE

- Channel-to-channel threshold dispersion compensation is performed using the capacitors-based autozeroing technique, no trimming procedure is required, threshold tuning is very fast.
- Auto-zeroing could be performed during the Abort Gaps, every 80µs, tuning is re-optimized very frequently.
- No local trimming DAC needed, less prone to SEU misconfiguration, pixels don’t risk to become too noisy.
- Optional Fast ToT feature: selectable frequency (in the 40-400 MHz range) 4-bit ToT counting. It decreases analog dead-time
- Fully functional after irradiation.
4.3. ANALOG FE MEASUREMENTS: SYNCHRONOUS FE

Threshold distribution for enabled pixels

Preliminary results

0 Mrad

Noise distribution for enabled pixels

Preliminary results

0 Mrad

Preliminary results

500 Mrad

Preliminary results

500 Mrad
4.2. ANALOG FE MEASUREMENTS: LINEAR FE

- Asynchronous FE
- In-pixel 4-bit threshold trimming DAC
- Tuning algorithms: injection based (used for results in this presentation) and noise based, results shown are obtained during the irradiation campaign, better tuning can be achieved.
- Fully functional after irradiation. Some outlier pixels in the threshold distribution, TDAC range will be increased and TDAC architecture improved.
4.2. ANALOG FE MEASUREMENTS: LINEAR FE

Threshold distribution for enabled pixels after tuning

- **0 Mrad**
 - $\mu = 91 \Delta V\text{CAL} = 979 \text{e}^-$
 - $\sigma = 6 \Delta V\text{CAL} = 61 \text{e}^-$
 - Failed fits: 63

- **500 Mrad**
 - $\mu = 127 \Delta V\text{CAL} = 1339 \text{e}^-$
 - $\sigma = 6 \Delta V\text{CAL} = 36 \text{e}^-$
 - Failed fits: 55

Noise distribution for enabled pixels

- **0 Mrad**
 - $\mu = 5.6 \Delta V\text{CAL} = 58 \text{e}^-$
 - $\sigma = 0.7 \Delta V\text{CAL} = 7 \text{e}^-$
 - Failed fits: 63

- **500 Mrad**
 - $\mu = 5.1 \Delta V\text{CAL} = 51 \text{e}^-$
 - $\sigma = 0.7 \Delta V\text{CAL} = 7 \text{e}^-$
 - Failed fits: 55

Chip SN 0x0595

Preliminary results
4.2. ANALOG FE MEASUREMENTS: DIFFERENTIAL FE

- Asynchronous FE
- In-pixel 5-bit threshold trimming DAC
- Fully differential architecture
- Tuning algorithms: injection based (used for results in this presentation) and noise based, results shown are obtained during the irradiation campaign, better tuning can be achieved.
- Fully functional after irradiation.
4.2. ANALOG FE MEASUREMENTS: DIFFERENTIAL FE

Threshold distribution for enabled pixels after tuning

Noise distribution for enabled pixels

Chip SN 0x0595
4.3. RING OSCILLATOR MEASUREMENTS

- Eight ring oscillators included in RD53A for radiation testing, built with different logic cells similar to DRAD chip with the chosen 9TNVT library.
- They are placed in the bottom right corner of the chip bottom.
- Each oscillator drives a 12-bit counter, that is enabled for a known amount of time set by configuration.
- Frequency of the rings can be easily obtained knowing the length of the enabling pulse and the number of counts obtained in the counter.

Global Pulse

Output ring oscillator

Preliminary results

Chip SN 0x0595

<table>
<thead>
<tr>
<th>Ring Oscillators frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>110-CKND0</td>
</tr>
<tr>
<td>112-INVD0</td>
</tr>
<tr>
<td>114-NAND0</td>
</tr>
<tr>
<td>116-NOR0</td>
</tr>
</tbody>
</table>

Chip SN 0x0595

<table>
<thead>
<tr>
<th>Ring Oscillators frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>111-CKND4</td>
</tr>
<tr>
<td>113-INVD4</td>
</tr>
<tr>
<td>115-NAND4</td>
</tr>
<tr>
<td>117-NOR4</td>
</tr>
</tbody>
</table>
4.3. RING OSCILLATOR MEASUREMENTS

Preliminary results

Digital gates with driving strength 4

Digital gates with driving strength 1
4.3. RING OSCILLATOR MEASUREMENTS

- **CHIP: 0x0595**
 Irradiated in Glasgow University, 3.9Mrad/h at -20°C

- **DRAD chip**
 Irradiated at CERN, 9Mrad/h at -20°C

Results of performance of the ring oscillators in RD53A with respect to DRAD in a similar range: RD53A degradation in the range of 72% to 87%, DRAD in the range 68% to 78%
5. SINGLE EVENT UPSETS

- **SEU**: RD53A supports ‘trickle configuration’: all the configuration (global and pixel configuration) can be gradually updated during operation by continually sending write commands in between triggers. This avoids the need for SEU hard configuration storage.

- Tests in different memory elements were done, potential use of DICE latches in the pixels would provide only an order of magnitude smaller upset cross section than standard latches.

- Triple Modular Redundancy (TMR) is a common technique to mitigate soft error rates, but spacing between memory elements in a TMR in 65nm process has not been addressed so far.

- A dedicated SEU chip, RD53SEU [4], has been designed to determine the best/affordable scheme for final chips:
 - **Goal**: characterize the soft error rates against the separation spacing and clock skew between memory elements in a TMR.

- Also SEU simulations will be carried out for the final chip.

Different TMR versions studied in RD53SEU chip

- **Triple Modular Redundancy without correction**
 - Diagram: [Diagram](#)

- **Triple Modular Redundancy with correction**
 - Diagram: [Diagram](#)

- **Triple Modular Redundancy with clock skew insertion**
 - Diagram: [Diagram](#)
6. CONCLUSIONS AND NEXT PLANS

• The RD53 collaboration has made an effort to study the radiation effects in electronics for the design and production of the pixel readout chips of ATLAS and CMS experiments at HL-LHC.

• Radiation test results with the RD53A prototype chip are very promising, showing good performance after high radiation doses. New radiation campaigns are foreseen in the early future, more specific measurements will be taken.

• Low dose rate test ongoing in our collaboration with Kripton source and preparations for a low dose rate test with Cobalt 60 are ongoing. Possibly a factor 2 worse with respect high dose rate [5].

• Also campaigns at room temperature are foreseen to compare effects with respect to low temperature.

• Tests with proton irradiated chip and sensors are on-going.

• SEU effects will be studied in RD53A.

• Full chip submission planned for 2019.
THANKS FOR YOUR ATTENTION!

BACK-UP SLIDES
SHUNT-LDO REGULATION AFTER 500MRAD IRRADIATION, -10°C

- IV-curve measurement with both regulators in parallel, R_{int} and external $V_{ofs}=0.5V$

=> SLDO regulator meets specs after irradiation to 500MRad
DAC LINEARITY

- Scans over the values of the VCAL_HIGH DAC and measures the resulting value with an external DVM.
- Steps of 100LSBs.
- This scan is also implemented in BDAQ using the internal ADC, results to be analysed.
DAC LINEARITY

DAC linearity with multimeter, 0 Mrad

DAC linearity with multimeter, 10 Mrad

DAC linearity with multimeter, 100 Mrad

DAC linearity with multimeter, 500 Mrad
DAC linearity with external DVM, 600 Mrad

- 0 Mrad, $T=-19.5(C), f(x) = (2.26 \times x + 238.68) \times 10^{-4}$, $r = 0.9999988$
- 1 Mrad, $T=-19.4(C), f(x) = (2.26 \times x + 233.25) \times 10^{-4}$, $r = 0.9999987$
- 2 Mrad, $T=-19.3(C), f(x) = (2.26 \times x + 234.21) \times 10^{-4}$, $r = 0.9999990$
- 3 Mrad, $T=-19.4(C), f(x) = (2.26 \times x + 232.56) \times 10^{-4}$, $r = 0.9999988$
- 4 Mrad, $T=-19.5(C), f(x) = (2.26 \times x + 231.26) \times 10^{-4}$, $r = 0.9999989$
- 5 Mrad, $T=-19.6(C), f(x) = (2.26 \times x + 230.23) \times 10^{-4}$, $r = 0.9999987$
- 6 Mrad, $T=-19.3(C), f(x) = (2.26 \times x + 230.27) \times 10^{-4}$, $r = 0.9999987$
- 7 Mrad, $T=-19.3(C), f(x) = (2.26 \times x + 231.06) \times 10^{-4}$, $r = 0.9999987$
- 8 Mrad, $T=-19.3(C), f(x) = (2.26 \times x + 230.97) \times 10^{-4}$, $r = 0.9999988$
- 9 Mrad, $T=-19.2(C), f(x) = (2.26 \times x + 229.72) \times 10^{-4}$, $r = 0.9999988$
- 10 Mrad, $T=-19.3(C), f(x) = (2.26 \times x + 229.26) \times 10^{-4}$, $r = 0.9999988$
- 20 Mrad, $T=-19.3(C), f(x) = (2.26 \times x + 224.34) \times 10^{-4}$, $r = 0.9999988$
- 30 Mrad, $T=-19.0(C), f(x) = (2.26 \times x + 222.10) \times 10^{-4}$, $r = 0.9999987$
- 40 Mrad, $T=-19.2(C), f(x) = (2.27 \times x + 221.03) \times 10^{-4}$, $r = 0.9999987$
- 50 Mrad, $T=-18.6(C), f(x) = (2.27 \times x + 222.17) \times 10^{-4}$, $r = 0.9999988$
- 60 Mrad, $T=-18.7(C), f(x) = (2.27 \times x + 221.76) \times 10^{-4}$, $r = 0.9999988$
- 70 Mrad, $T=-18.7(C), f(x) = (2.27 \times x + 221.28) \times 10^{-4}$, $r = 0.9999987$
- 80 Mrad, $T=-18.4(C), f(x) = (2.27 \times x + 222.43) \times 10^{-4}$, $r = 0.9999987$
- 90 Mrad, $T=-18.3(C), f(x) = (2.27 \times x + 223.08) \times 10^{-4}$, $r = 0.9999986$
- 100 Mrad, $T=-18.2(C), f(x) = (2.27 \times x + 223.25) \times 10^{-4}$, $r = 0.9999988$
- 150 Mrad, $T=-18.5(C), f(x) = (2.28 \times x + 221.98) \times 10^{-4}$, $r = 0.9999988$
- 200 Mrad, $T=-18.3(C), f(x) = (2.28 \times x + 221.65) \times 10^{-4}$, $r = 0.9999987$
- 250 Mrad, $T=-17.3(C), f(x) = (2.29 \times x + 221.50) \times 10^{-4}$, $r = 0.9999986$
- 300 Mrad, $T=-17.7(C), f(x) = (2.29 \times x + 219.69) \times 10^{-4}$, $r = 0.9999977$
- 350 Mrad, $T=-17.3(C), f(x) = (2.30 \times x + 218.71) \times 10^{-4}$, $r = 0.9999998$
- 400 Mrad, $T=-16.8(C), f(x) = (2.30 \times x + 216.99) \times 10^{-4}$, $r = 0.9999988$
- 450 Mrad, $T=-18.2(C), f(x) = (2.31 \times x + 218.08) \times 10^{-4}$, $r = 0.9999989$
- 500 Mrad, $T=-18.0(C), f(x) = (2.31 \times x + 217.05) \times 10^{-4}$, $r = 0.9999989$
- 550 Mrad, $T=-19.0(C), f(x) = (2.32 \times x + 214.66) \times 10^{-4}$, $r = 0.9999988$
- 600 Mrad, $T=-18.6(C), f(x) = (2.32 \times x + 215.44) \times 10^{-4}$, $r = 0.9999987$
Comparison with previous tests:

- **CHIP: 0x0595**
 Irradiated in Glasgow, 3.9 Mrad/h campaign described in this presentation (here only plotting up to 500 Mrad for comparison).

 Difference between the two chips after 500 Mrad is not big, about 3% difference after 500 Mrad

- **CHIP: 0x0765**
 Irradiated at CERN, 3.9 Mrad/h, results explained by Vasyl Drozd in https://indico.cern.ch/event/743169/contributions/3085369/attachments/1698462/2734424/RingOsc_Drozd_07_08_2018.pdf
RING OSCILLATOR MEASUREMENTS

Correlated with temperature

Ring Oscillators Frequency in % respect pre-irrad

Frequency respect before irradiation (%)

Dose (Mrad)

Temperature

T(C)

Dose (Mrad)
RING OSCILLATOR MEASUREMENTS IN DRAD CHIP
DIGITAL TESTS

- Chip is operating after 500 Mrad.
- Command decoder responds, the chip is configurable.
- In order to test the digital buffering, signals can be sent to the digital domain simulating the output of the analog front-ends.
- No difference in Bunch Crossing ID and number of hits detected were seen after 1 Grad.