

Extremely radiation-hard technologies: 3D silicon sensors

G. Forcolin, R. Mendicino, G.F. Dalla Betta

University of Trento and TIFPA-INFN

Outline

- Introduction to 3D sensors
- Fabrication process
- Small pitch 3D sensors
 - Design and results
- 3D trench sensors
 - Design and simulation
- Outlook

3D Sensors

Advantages:

- Low Depletion Voltage
- Lateral Drift
 - Fast Response
 - Low Sensitivity to mag. fields
- Short inter-electrode distance
 - Fast Response
 - Reduced trapping probability => more rad hard

Disadvantages

- Non-Uniform Electric Field
- High Capacitance
- Complicated + expensive manufacturing process

ATLAS IBL Sensors

- Used double sided 3D sensors
- Advantages:
 - Reduced process complexity
 - Backside accessible for bias
 - Allows slim edge

ATLAS IBL, JINST 7 (2012) P11010

- Downsides:
 - Active edge not possible
 - Mechanically more fragile
 - Wafer bowing

G. Giacomini, et al., IEEE TNS 60(3) (2013) 2357

3D sensors at HL-LHC

- Requirements:
 - higher hit-rate
 - increased granularity
 - higher radiation tolerance
 - lighter detectors
- To meet Requirements:
 - Produce thinner sensors (~100µm)
 - Reduce electrode spacing (~30µm)
 - Narrower electrodes (5µm)
 - Small/Active edges (<100µm)
- => need to change fabrication method

Single sided production method

- Use single sided process with support wafer
 - Can reduce active thickness without compromising mechanical properties
 - Active edges
 - Post processing required to thin support layer and deposit metal
 - Front side layout => processing can be complicated

Fabrication Process

- Columns produced using Deep Reactive Ion Etching (DRIE) by the Bosch process
- Alternating etch cycles (SF₆) and passivation cycles (C₄F₈)
- Can achieve high aspect ration (~30:1 or better) and good uniformity

VERTEX 2018 G. Forcolin 23 October 2018

824 (2016) 386 and 388

FBK Fabrication Process

- Production steps:
 - Etch ohmic columns > active thickness
 - Fill with Poly-Si (at least partially)
 - Etch junction columns < active thickness

FBK Fabrication Process

- Small pitch 3D layouts being investigated
- 50x50μm², 25x100μm² 1E, 25x100μm² 2E
- 25x100µm² 2E difficult to manufacure due to constraints on position of bump

- First batch successully manufactured
- Good Electrical properties
- Measurements made pre and post irrad

DMS Sultan et al., JINST 12 (2017) C01022

- CERN Non uniform 24GeV proton irradiation, peak 9.6x10¹⁵ n_{eq}/cm²
- Neutron Irradiation at JSI, Ljubljana

H. Oide et al., HSTD11, 2017

VERTEX 2018 G. Forcolin 23 October 2018

- Measurements made using position resolved IR laser setup (λ =1064 nm, pulse width 40 ps (Alphalas))
- Measure relative signal efficiency vs pre-irradiation
- 80x80µm² region on interest

• 50x50µm, 1x10¹⁶ n_{eq}/cm²

• 50x50µm, 2x10¹⁶ n_{eq}/cm²

• 50x50µm, 3.5x10¹⁶ n_{eq}/cm²

25x100µm 2E, 1x10¹6 n_{eq}/cm²

• 25x100µm 2E, 2x10¹⁶ n_{eq}/cm²

25x100µm 2E, 3.5x10¹⁶ n_{eq}/cm²

- Second batch of sensors produced
- 25x100µm² 2E problematic to manufacture, low yield
- Try to overcome using stepper
- Measurements ongoing

- Try to use stepper
 - Minimum feature size 350nm
 - Alignment accuracy 80nm

- Projection => low defect level
- Max exposure area ~2x2cm²
- Can produce larger devices using photo-composition

- First Layout complete
- Use photocomposition
- Contains:
 - Test Structures
 - 50x50µm²
 - 25x100µm² 1E
 - 25x100µm² 2E

- Produced first batch of sensors using double sided process on 230µm wafer 8um column diameter
- Produced different types of sensors
 - 50x50μm² and 25x100μm² strips
 - 50x50µm² and 25x50µm² pads for electrical tests
- Later produced sensors using single sided process
- Measured capacitance of pads: 50x50µm²: 40fF/pixel; 25x50µm² 60fF/pixel
- Tests Ongoing

E. Curras et al., RD50, June 2017

- Performed number of irradiations on DS strip devices
- Acheived 100% efficiency at 5V before irradiation
 - 80% efficiency at $1.5x10^{16}$ n_{eq} /cm² for $50x50\mu m^2$ sensors
 - 65% efficiency at 1.5x10 16 n_{eq}/cm² for 25x100µm² sensor
- So far indication that 50x50µm more radiation hard than 1E

M. Manna et al., RD50, June 2018

- Uniform Irradiation at KIT
- Non Uniform irradiation at CERN
- Reach 98% efficiency plateau after $2.7x10^{16} \, n_{eq}/cm^2$
- Significant improvement on IBL sensors

J. Lange et al., HSTD11, 2017

- New batch of Single Sided devices produced; 100µm & 150µm active thickness on 300µm support layer
 - 50x50µm² cells
 - 25x100µm² 1E cells
 - 25x100µm² 2E cells
- Measurements ongoing (irradiated device testbeam)

M. Manna et al., RD50, June 2018

Timing in 3D Sensors

- 3D trench sensors being investigated for timing applications
- Some sensors produced at CNM in 2013, sensors worked but with high leakage current

A. Montalbano et. al. NIMA 765 (2014), 23

Advantages:

- High average field
- Uniform weighting field
- Initial pulse (largely) independent of position
- Very Radiation Hard Drawbacks:
- Possible fabrication problems
- High electrode capacitance

- Investigating TIMEPIX compatible trench sensors
- Trenches are dead area, so minimize thickness (~4μm)
- Tests of fabrication procedure underway to optimize fabrication parameters
- Test mask produced with wide range of possible geometries and spacings for tests
- Design being optimized with TCAD simulations
- New mask being designed for first lot of sensors

Time SPace real-time Operating Tracker

- Tests of the procedure are ongoing
- Results look promising
- Still some issues to fully resolve

Trench Length:

 $41 \mu m$

 $43 \mu m$

 $45~\mu m$

 $47 \mu m$

 $49 \mu m$

Trench Length:

 $41 \mu m$

 $43 \mu m$

 $45 \mu m$

 $47 \mu m$

 $49 \mu m$

Trench Length:
41 μm
43 μm
45 μm
47 μm

Trench Length: 45 µm

- Strong dependance of trench dimension on inter-pixel capacitance
- Small change in capacitance between opposite electrodes due to trench dimensions

30

 At full depletion, negligible difference in capacitance between different geometries

VERTEX 2018 G. Forcolin 23 October 2018

Outlook + Conclusions

- New approach desired after production of IBL
- A number of small pitch 3D devices have been successfully fabricated using this method
- Good performance even after irradiation
- Single Sided CNM sensor testbeam
- Lot using stepper about to get underway at FBK
- 3D trench sensors are being investigated the for the HL-LHC

VERTEX 2018 G. Forcolin 23 October 2018

Backup Slides

Capacitance Results

- Find relationship between interpixel capacitance and trench length
- Approximate inter-pixel capacitance using parallell plate capacitor equation

$$C = \frac{\varepsilon \, \varepsilon_0 \, A}{d}$$

• Find effective area ~1790µm²

VERTEX 2018 G. Forcolin 23 October 2018

Capacitance Results

3D Test Structures

Single Pixel

Multi-Pixel Strips

Test Pixel Devices

37