Tracking and vertexing using the ATLAS detector

G. Gaycken on behalf of the ATLAS collaboration
"high" pileup event with 28 vertices, the typical run-2 event has \(\sim 15 \) vertices.
The ATLAS inner detector
2 T magnetic field, ID radius 1.1 m, coverage $|\eta| < 2.5$

Technologies:

TRT:
Xe (Ar) filled straw tubes ($\varnothing = 4$ mm), $\varnothing(30)$ crossed straws per track.

SCT:
Double sided strips 8 barrel layers, 9 disks, $80 \mu m \times \sim 6$ cm, 40 mrad stereo angle

Pixel:
3 layers, 3 disks, $50 \times 400 \mu m^2$

IBL:
1 barrel layer, $50 \times 250 \mu m^2$, radius 3.3 cm
Atlas ID track reconstruction:
Atlas ID track reconstruction:

Build Clusters
Atlas ID track reconstruction:

Build Clusters

Make track seeds
Atlas ID track reconstruction:

- Build Clusters
- Make track seeds
- Find tracks
Atlas ID track reconstruction:

1. Build Clusters
2. Make track seeds
3. Find tracks
4. Handle merged Pixel cluster (NN)
Atlas ID track reconstruction:

1. Build Clusters
2. Make track seeds
3. Find tracks
4. Handle merged Pixel cluster (NN)
5. Resolve ambiguities and fit track (GXF)
Atlas ID track reconstruction:

- Build Clusters
- Make track seeds
- Find tracks
- Handle merged Pixel cluster (NN)
- Resolve ambiguities and fit track (GXF)
- Extend to TRT
Alignment

- based on global χ^2 minimisation of hit-to-track residuals,
- performed at different levels: sub-detector \rightarrow layers \rightarrow modules.
- Since run 2, alignment updates (\sim every 10 min):

IBL bowing correction

Pixel y-position

\[\Theta(100 \, \mu m) \]

\[\Theta(5 \, \mu m) \]
Alignment stability

- Alignment monitored to fix emerging issues immediately, but also by fast reprocessing.
Weak modes

Global χ^2 from hit-to-track residuals unaffected.
→ need external constraints:
 e.g. invariant mass in $Z \rightarrow \mu\mu$, or $J/\psi \rightarrow \mu\mu$
Radial distortions

For each radial expansion δR: track parameters exist which lead to identical residuals i.e. same sagitta s, same z positions Δz

$$p'_T \simeq p_T (1 + 2 \delta R / R_0)$$

$$p'_z \simeq p_z (1 + \delta R / R_0)$$

→ Momentum scale not constrained by hit-to-track residuals.
Radial distortion

\[\frac{\Delta p_T}{p_T} \approx 0.1\% \]

Measured radial distortion ~ stable throughout years (corresponds to distortion of ID radius of ~ 500µm).

ATLAS Preliminary

Data 2016 \(\sqrt{s} = 13 \) TeV \(L=33 \) fb\(^{-1} \)

\(|\eta_\mu| < 1.07 \)

\[\epsilon = \frac{\delta R/R_0}{10^{-3}} \]

- \(\triangle Z \rightarrow \mu^+\mu^- \)
- \(\circ J/\psi \rightarrow \mu^+\mu^- \)
- \(\triangledown Y \rightarrow \mu^+\mu^- \)
Tracking efficiency

Average tracking efficiency

Average track multiplicity

- In run-2 tracks reconstructed with $p_T > 500$ MeV.
- Uncertainties evaluated for two working points:
 - Loose: larger efficiency.
 - Tight Primary: larger purity.
Tracking stability

In particular for track based luminosity measurements (Z-counting) stability crucial:

- event yield with di-muons in invariant mass window.

In 2017 track selection for Z-counting adjusted to improve stability wrt. $\langle \mu \rangle$:

Average interaction / BX ($\langle \mu \rangle$)

![Graph showing average interaction per BX over time](image)

Efficiency vs $\langle \mu \rangle$

- re-optimised track selection
- initial track selection
- MC
- Data
Tracking stability

In particular for track based luminosity measurements (Z-counting) stability crucial:

- event yield with di-muons in invariant mass window.

In 2017 track selection for Z-counting adjusted to improve stability wrt. $\langle \mu \rangle$:

Efficiency vs $\langle \mu \rangle$
Efficiency vs time

- re-optimised track selection
- initial track selection
- MC
- Data
IBL radiation damage

Radiation damage impacts charge collections → cluster size.

![Graph showing the relationship between delivered luminosity and cluster size](graph)

ATLAS Preliminary

Data 2016, $\sqrt{s} = 13$ TeV

IBL

Cluster size

$\langle dE/dx \rangle$

\langlecluster size $\phi\rangle$

\langlecluster size $z\rangle$

Delivered luminosity [fb$^{-1}$]

HV 80 V

G. Gaycken Tracking and vertexing using the ATLAS detector Chennai, October 21-26, 2018 11
IBL Charge collection

Charge Collection Efficiency

Integrated Luminosity [fb⁻¹]

ATLAS Preliminary

IBL planar modules

Data 80 V

Standalone Simulation 80 V
IBL Charge collection

Charge Collection Efficiency vs. Integrated Luminosity [fb⁻¹]

ATLAS Preliminary
IBL planar modules

Data 80 V
Data 150 V
Standalone Simulation 80 V
Standalone Simulation 150 V
IBL radiation damage

Radiation damage impacts charge collections \rightarrow cluster size.

![Graph showing the relationship between delivered luminosity and cluster size](image)

ATLAS Preliminary

Data 2016, $\sqrt{s} = 13$ TeV

Cluster size

dE/dx
IBL charge vs bias voltage

ToT [BC] vs Bias Voltage [V]

- **data - end 2017**
- **Standalone Simulation: $\phi=6 \times 10^{14} \text{n}_\text{eq}/\text{cm}^2$ (end 2017)**

ATLAS

Preliminary

IBL planar modules

Bias Voltage [V]
IBL charge vs bias voltage

![Graph showing ToT vs Bias Voltage for IBL planar modules, with data and simulation points, indicating ATLAS Preliminary results.](image-url)
tracks (ghost) associated to jets ($p_T > 20$ GeV) in di-jet events:

d_0 resolution

z_0 resolution

Impact parameter resolution very stable!
For pp collisions, primary vertices reconstructed with iterative vertex finder assigning tracks to individual vertex candidates.

Efficiency $\mathcal{O}(40\%)$: 90% acceptance, detector effects dominant at low μ, vertex merging at high μ.

Alternative methods being studied for run 3 and beyond.
Vertex multiplicity

2017

\[\langle \mu \rangle_{\text{bunch}} = 43.3 \text{ with } \pm 4\% \text{ syst. on } \langle \mu \rangle_{\text{bunch}} \]
\[\langle \mu \rangle_{\text{bunch}} = 28.2 \]

2018

\[\langle \mu \rangle_{\text{bunch}} = 45.5 \]
\[\langle \mu \rangle_{\text{bunch}} = 47.1 \]

- Stable performance over run 2 \(\mu \) range, but
- efficiency differs between fills by \(\mathcal{O}(\%) \).
Vertex multiplicity

2017

ATLAS Preliminary

\[\langle \mu \rangle_{\text{bunch}} = 43.3 \text{ with } \pm 4\% \text{ syst. on } \langle \mu \rangle_{\text{bunch}} \]

\[\langle \mu \rangle_{\text{bunch}} = 28.2 \]

2018

ATLAS Preliminary

data 2018, \(\sqrt{s} = 13 \text{ TeV} \)

- April \(\langle \mu \rangle = 45.5 \)
- June \(\langle \mu \rangle = 47.1 \)

Stable performance over run 2 \(\mu \) range, but

- efficiency differs between fills by \(O(\%) \).
Run 3 and beyond

- Few algorithmic changes planned for run 3:
 - better handling of merged SCT clusters,
 - possible switch to an alternative primary vertex finder,
 - tuning for tracks in high p_T jets.
- but large efforts to modernise the software
 - transition from multi-processing to multi threading (event parallel to algorithm, sub-algorithm parallel),
 - staged migration to ACTS.
SCT merged clusters

Width of isolated SCT clusters in $\tau \rightarrow \pi\pi\pi$, $p_{T,\tau} > 400$ GeV

Single particle

More than one particle

unmerged all 3 π produce SCT clusters on both sides, which are not connected.
SCT merged cluster

Cluster width to identify particle multiplicity:

Width difference

<table>
<thead>
<tr>
<th>Width difference</th>
<th>0</th>
<th>0.2</th>
<th>0.4</th>
<th>0.6</th>
<th>0.8</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>500</td>
<td>400</td>
<td>300</td>
<td>200</td>
<td>100</td>
<td>0</td>
</tr>
</tbody>
</table>

- Observed width (W_o) - Calculated hit width ($W_{0.2}$)

Performance of classification

- Probability of correctly splitting merged hit
- Probability of splitting unmerged hit

Computed hit width

Computed from local track angle and Lorentz angle.

ATLAS Simulation Preliminary

Run 2, $\tau \rightarrow 3\pi^0\nu$, $|\eta|=0$

$P_{T,\tau} = 400-1000$ GeV

G. Gaycken Tracking and vertexing using the ATLAS detector

Chennai, October 21-26, 2018
SCT merged clusters

Efficiency

"Duplicate" tracks

Duplicate tracks multiple reconstructed tracks associated to a single π.

G. Gaycken Tracking and vertexing using the ATLAS detector Chennai, October 21-26, 2018
A Common Tracking Software

- Toolbox for track reconstruction;
- modern, multi threading friendly code;
- detector and framework independent.
 → sharing of solutions across experiments.
- Most contributors from ATLAS (but should not stay like this)
 - Currently, solutions mostly based on ATLAS ideas.
 - In the future, all users will benefit from better algorithms.
- Plan to have fully migrated before run 4.

→ https://acts.web.cern.ch/AIDS.
Summary

- Stable performance through out run 2.
- Signs of radiation damage become visible, but mostly mitigated and no significant impact on physics performance yet.
- Alignment better and better understood.
- Considered algorithmic improvements for run 3:
 - improved handling of shared SCT clusters,
 - improved vertex finding better suited for high pileup.
Extra Material
Track selection

- **Loose:**
 - $|\eta| < 2.5,$
 - number of Silicon Hits $\geq 7,$
 - number of Shared Modules $\leq 1,$
 - number of Silicon Holes$^a \leq 2,$
 - number of Pixel Holes $\leq 1.$

- **Tight Primary:**
 - fulfills Loose requirements,
 - number of Silicon Hits ≥ 9 and ≥ 11 for $|\eta| > 1.65,$
 - at least 1 hit on first two pixel layers (if expected),
 - no pixel Holes.

aHoles: locations between the inner and outermost hit of a track at which a hit is expected but non observed
Primary vertices

Multiplicity vs $\langle \mu \rangle$

Vertex z-position

ATLAS Preliminary
data 2018, $\sqrt{s} = 13$ TeV

$\mu_{\text{April}} = -6.213 \pm 0.002$
$\sigma_{\text{April}} = 36.936 \pm 0.001$

$\mu_{\text{June}} = -8.317 \pm 0.003$
$\sigma_{\text{June}} = 34.632 \pm 0.002$

G. Gaycken
Tracking and vertexing using the ATLAS detector
Chennai, October 21-26, 2018
IBL Charge collection

Charge Collection Efficiency

ATLAS Preliminary
IBL planar modules

- Data 80 V
- Data 150 V
- Data 350 V
- Standalone Simulation 80 V
- Standalone Simulation 150 V
- Standalone Simulation 350 V

Integrated Luminosity [fb⁻¹]