Advanced mechanics for silicon tracker

Georg Viehhauser
The purpose of tracker mechanics

• Support detector elements in space
 • During operation
 • During production and integration

• Support services

• (Often:) provide a thermal path from local heat sources to a sink
 (typically a cooling pipe)

• But: The most powerful tool to obtain knowledge of the sense element positions (on the scale of a tracker) is track-based alignment (TBA)
 • Hardware alignment systems are challenging and not capable of providing position information for (all) the sense elements at the required level
 (typically µm)
 • Structure design must facilitate and support TBA – this drives many requirements
Requirements

• Mechanical Requirements:
 • Positioning
 • Includes deformation under static loads (loads that are reproducible – gravity, but also power etc.)
 • Stability:
 • This is the critical requirement
 • Timescales:
 • TBA is done with data taken within a period (depending on the size of the structure to be aligned)
 • ATLAS/CMS: Large structures can be aligned often (daily), individual modules 1-2 times per year
 • This defines stability timescales
 • Loads:
 • Vibrations (external and internal)
 • Variations in on-detector heat loads and temperatures (electronics and cooling)
 • Seismic events (major disruptions of detector status – cooling system on/off, magnet quench, etc.)
 • Humidity variations
 • Long-time response to static loads (‘creep’)

• Strength
 • Usually (apart from space experiments) less demanding - mostly during transport and integration

• Thermal requirements:
 • Geometry and materials for thermal path
Material

• Current systems (ATLAS/CMS are typically $O(1\%X_0)$ per layer)

• Future detectors, independent of the exact machine topology (lepton linear or hadron circular) will demand significantly less material
 • Lepton collider: reduce material to achieve good resolution at low momenta
 • Hadron collider: reduce material to keep magnet size manageable while maintaining momentum resolution

• Contributions from sensor & FE electronics and structure & services
 • Structure material must match sensor material
 • Future tracker will be HV-CMOS with integrated FE, possibly thinned down
 • This will greatly reduce material – challenging to match
 • Will only achieve this with composites and integrated services
Mechanical requirements - placement

• Placement accuracy usually not critical
 • TBA will find generally find initial displacements very quickly

• What is required?
 • It needs to go together (clearances are typically in order of mm)
 • Need to maintain overlaps
 • Hermeticity for physics (typically down to a give momentum) – defining for large radii (trackers)
 • Overlaps of a few sense elements per module needed for TBA (typically stiff tracks) – defining for small radii (vertex detectors)
 • Placement accuracies (typically a very few 100µm) need to be added – result in more material/constrained space

• Knowledge of out-of-plane position to better than 10-100 µm is useful
 • This is where TBA is weak
 • This can be achieved by placement (build accuracy), survey, or hardware alignment
 • All very difficult at this level

• What can be useful and is achievable are
 • Local survey data or build precision
 • Parametric models of deformations

• If you are working on structures: Speak to your alignment people!
Mechanical requirements – stability under vibration

• External vibrations are tiny (ASD<<10^{-7} \text{ g}^2/\text{Hz})
• Exact response of structures requires FEA and measurement, but a simple estimate can be obtained from Miles’ equation

\[\delta_{\text{RMS}} = \frac{a_{\text{RMS}}}{(2\pi f_0)^2} = \sqrt{\frac{ASD \cdot Q}{32\pi^3 f_0^3}} \]

• Response of a 1D oscillator (to a flat ASD), but still a meaningful estimator for 3D geometries (with \(f_0 \) frequency of first mode)

• Internal vibrations are usually tiny
 • Possible exception is air flow in air cooling systems
 • Very difficult to predict (as is the cooling performance in these systems), as it depends on local perturbations
 • Strive to use channelled air flow

• Generally: Vibrations can be easily controlled
Mechanical requirements – stability under thermal loads

• The first approach to thermal loads must always be to make them constant
 • On time scales which are longer than the thermal response time of the system \(\tau > \frac{RC}{RC} \) with \(R \) the thermal impedance (definition later), and \(C \) the heat capacity of the system
 • Typically several seconds
 • This should be a design requirement for the FE…
 • If the electronics power is varying (for example with the trigger rate), then a programmable shunt can be used to compensate for these variations
 • …and the cooling system
 • In an evaporative cooling system this is achieved by stable feed and return pressures (and constant heat loads)
 • In monophase system (including air cooling) that’s stable input temperature and flow rates

• For the mechanical design: Be careful with bonding dissimilar materials with differential thermal expansion
 • Best approach: strive for symmetry
Structure shape and tracker layout

- Stiffness is a function of modulus and cross-section
 - For example: Euler-Bernoulli beam
 \[\lambda \frac{\partial^2 y}{\partial t^2} + c \frac{\partial y}{\partial t} + EI \frac{\partial^4 y}{\partial x^4} = \phi(x, t) \]
 - The relevant structural performance parameter is the bending stiffness \(EI \)
 - \(E \): elastic modulus
 - For flat geometries unidirectional UHM fibres (fibre \(E > 800\text{GPa} \)), widely used is K13C/D2U – little room for improvement
 - For sharp corners and woven material lower modulus is required
 - \(I \): moment of inertia
 - Increase cross-section
 - To prevent local buckling: increase local stiffness (again best by 3D shaping)

- Material-optimal layouts are inclined
 - Difficult to reconcile with linear cooling structures
- Move from longitudinal and flat structures to true 3d structures

ATLAS upgrade alpine layout T.Todorov et al.
ATL-UPGRADE-PUB-2013-009
Thermal requirements

• Detectors must be cooled to
 • Remove heat from the FE and radiation-damaged sensors
 • Prevent detrimental annealing effects (less relevant for n-in-p as used in strip systems for LHC phase II upgrades)
 • Maintain thermal stability after radiation damage (prevent “thermal runaway”)

• The relevant structural property contributing to the thermal performance is the thermal impedance between sources and sink (coolant)
 • Dimensionally this is the temperature difference divided by the heat transferred (a power)
 • Widely used is the term ‘thermal figure of merit’
 • This is the inverse, but also includes a normalization factor for area which has little meaning
 • This term tends to obscure the physical meaning of this parameter
Thermal modelling

• Prediction of temperatures is in principle possible (using 3D FEA) but is a tedious job once different conditions need to be explored
 • In particular if there are more temperature-dependent parameters in the system (e.g. electronics damage mechanisms (TID effect) or efficiencies)

• Simple network models can be useful approximations
 • In simple cases these can be solved analytically
 • In more complex cases they still provide a tool to develop parametric models which can be solved numerically in short time

• These models can include many inputs (sensor and electronics parameters)
 • The key input from mechanics is thermal impedance – this can be obtained from FEA and measurements
Thermal modelling examples

Simple network model

\[T_{S,crit} \approx \frac{T_{ref}}{1 - \frac{T_{ref}}{T_A} \ln \left(\frac{T_{ref}^2}{R_a T_A} T_A \right)} \]

\[T_{0,crit} = T_{S,crit} \left(1 - \frac{R_c Q}{T_{S,crit}} \right) \]

\[T_{C,crit} = T_{0,crit} - \frac{R_c Q}{T_{S,crit}} \]

Complex network model (ATLAS phase II strips)

- **Thermal part**
 - Includes temperature-dependent TID bump and converter efficiency

- **Electrical part**

ATLAS SCT

Sensor T

Sensor I

Runaway

NIM A 618 (2010) 131–138

Kurt Brendlinger, Forum Tracking Detector Mechanics 2018
Thermal geometries and cooling integration

• Thermal impedance is given by
 • Thermal conductivities (materials)
 • Cross-section and length of thermal path

• This optimization has driven the development of cooling geometries over the past 30 years
 • Heat sink moves progressively closer to sources

• The current state of the art are planar microchannels
 • In Silicon: Good pressure retention, thermal properties similar to sensor
 • But difficult to scale to tracker size – Need to investigate flexible microchannel technologies
Service integration – electrical

• An elegant widely used solution for low-mass services are Kapton/metal flex circuits
 • Kapton/Cu is straightforward, Kapton/Al needs careful manufacture and choice of connection techniques to avoid cracking
 • Can be co-cured with the carbon fibre structure to save fixture material or glue
 • Typical connection to modules by wire bonding
 • Interesting challenge how to do bonding in non-flat geometries

• Issues:
 • Bonding of services to structures causes differential thermal expansion issues
 • Design symmetric sandwiches
 • Electrical insulation layers also have poor thermal conductivity – can create a thermal barrier

Done (e.g. ATLAS strips) Not yet

Kapton/Cu co-cured with 3 layers of K13C2U/EX1515 0/90/0

ATLAS barrel strips

1400 mm

100 mm
Modularity

• To limit time needed for integration and access modularity must be designed into the system from the beginning

• Modularity here means
 • Each component is contained, with simple interfaces to the rest of the system
 • Does not necessarily mean that there are large numbers of a specific modular item
 • Modular components link together in a hierarchy
 • During integration only fully tested modules are being added, so for each new integration step only the success of only this step needs to be verified
 • Wherever applicable modules can be produced in parallel

• Modularity for all components of the tracker at all levels
 • Detector modules – local supports – services – global supports – sub systems – tracker etc.
 • Build in enough levels into this hierarchy to allow for early and vigorous QA, and so that incremental change for each integration step remains small
Case studies: ALICE ITS OB

- Moment of inertia through truss structure
 - Filament-wound carbon fibre (M55J, 540 GPa)
 - Sag 40-110 µm (depending on support conditions), 50 Hz spring-supported
- Thermal conductivity through cold plate
 - Unidirectional UHM CF (K13D2U) with polyimide tubes (64 µm wall)
- Flexible Printed Circuit: Polyimide/aluminium
 - Connect to chip by laser soldering

Case studies: Mu3e

Ultra–low mass (0.1%X_0/layer) achieved by

• Support structure made from Kapton
• Kapton/Al High Density Interconnect with tab bonding

Frank Meier, Forum Tracking Detector Mechanics 2018 and Kirk Arndt private communication
Case studies: Inclined rings

- Inclined rings to optimize material in barrel/endcap transition regions
 - Inclined layouts are difficult to realize with axial structures (in particular the thermal management is challenging)
 - To allow cylindrical modularity inclined rings at same radius as barrels
 - Some of the gain in module material is offset by increased service material (in particular cooling)

ATLAS outer barrel pixels

CMS TBPS

600 mm
Case Studies: STAR PXL

- 0.4% X_0/layer
- Mechanics optimized for quick installation/de-installation
 - Structure consists of cantilevered sector tubes
- Air flow cooling through sector tube (9 m/s)
 - Sector first mode: 230 Hz (measured)
 - Sensor vibration at full flow: 5 µm RMS
 - Sensor displacement at full flow: 25-30 µm
- No TBA assumed for design
 - All sensor positions surveyed on a half-detector
 - But TBA was used in the analysis

Deformation under air flow
Sensor survey
Case studies: Box channel

- Design study for future tracker
- Scale vertex detector sector tube geometries to tracker dimensions
 - Includes air cooling channels
 - Next step is to co-cure Kapton/metal flex circuits
- Study possibility to link channels circumferentially
 - This would further increase moment
- Still a linear object
 - Is it possible to shape surface for inclined modules?
Advanced mechanics summary

• Mechanical properties are driven by needs of TBA
 • The key requirement is stability
 • Stiffness under external vibrations is not a concern as the load levels are typically very low
 • A possible source for internal vibrations is air flow in air cooling system – ideally to be addressed by channelling the flow
 • Thermo-mechanical loads should be addressed by levelling power and cooling temperatures, and symmetric designs

• Thermal properties are driven by radiation damage issue
 • Most prominent requirement is thermal stability
 • Reduce thermal impedance from sources to local sink by bringing cooling as close to heat sources as possible

• New sensor technologies and requirements for future experiments (to $0.1X_0/1X_0$ per layer) demand significant reduction in structure material
 • Stiffness/material ratio can only be improved by increased moment of inertia
 • Material-optimized layouts do require tilted module geometries
 • Services must be tightly integrated into structures
 • Stiffness optimization and material optimization will drive development of more open, non-linear structures
Further Material
Linear model verification

Normal modules

ATLAS barrel strips - FEA and linear model

End-of-stave modules

Average temperature of this sensor
(Note ~15° across sensor)

Dots: FEA
Line: Linear model

FEA Results (LS17_5_RAT)

Long Strip EoL \(\Delta T \) (sensor mean T rise above Tevap) vs Tevap for fluence (SF=1.5) at innermost of 4 barrels.