
Status of the Analysis Framework

Andreas Morsch
ALICE Offline Week

10/10/200710/10/2007

Wh Organi ed Anal sis ?Why Organized Analysis ?
• Most efficient way for many analysis tasks to read

and process the full data setand process the full data set.
– In particular if resources are sparse.
– Optimise CPU/IO ratio

• But alsoBut also
– Helps to develop a common well tested framework for

analysisanalysis.
– Develops common knowledge base and terminology.
– Helps documenting the analysis procedure and makes

results reproducible.

Acceptance and Efficiency Correction Services

Monte Carlo Truth

Acceptance and Efficiency Correction Services

ESD/AOD

Monte Carlo Truth

TASK 1 TASK 2 TASK … TASK N

AOD

Design GoalsDesign Goals
• Flexible task and data container structure
• User code independent of computing schemaUser code independent of computing schema

(interactive: local, PROOF or batch: GRID)
• Input data: ESD AOD MC TruthInput data: ESD, AOD, MC Truth

– Access using common interface
• Output data:• Output data:

– AOD
But also user histograms containers for efficiency– But also user histograms, containers for efficiency
calculations

– Transparent handling of memory resident and fileTransparent handling of memory resident and file
resident data in distributed environment

ImplementationImplementation
• Analysis train/taxi similar to PHENIX

B d h i i• Based on the existing
AliAnalysisManager/Task frameworkAliAnalysisManager/Task framework
(A. and M. Gheata)

• AliVEventHandler interface for transparent
optional additional event loop managementsoptional additional event loop managements

• AliVEvent, AliVParticle, … for transparent
data access

AliAnal sis Frame orkAliAnalysis… Framework
• Data-oriented model composed of

independent tasks

CONT 0 CONT 1

independent tasks
– Task execution triggered by data

readiness INPUT 0 INPUT 1readiness

• Parallel execution and event loop
AliAnalysisTask

done via TSelector functionality
– Mandatory for usage with PROOF

y

OUTPUT 0y g

• Analysis execution performed on
event by event basisevent-by-event basis.
– Optional post event loop execution. CONT 2

A. Gheata

AliAnalysis + Optional Data Services

AliAnalysisManager

AliVirtualEventHandler

AliAnalysisManager

AliVirtualEventHandler

TChain
AliAODHandlerAliMCEventHandlerAliAnalysisTask

AliAnalysisTask
AliAnalysisTask

AliAnalysisTask

TChain

y
AliAnalysisTask

AliVEvent

AliAODEventAliMCEventAliESDEvent
(AliAODEvent)

AliVParticleComment:
O ld t i th d i

AliMCParticle AliAODtrackAliESDtrack

One could symmetrise the design
by “hiding” the TChain mechanism
inside an input handler.

Common ESD Access HandlingCommon ESD Access Handling
void AliAnalysisTaskXYZ::ConnectInputData(Option_t* option)
{

// Connect the input data // p
fChain = (TChain*) GetInputData(0);
fESD = new AliESDEvent();
fESD->ReadFromTree(fChain);

..

...
}

void AliAnalysisTaskXYZ::Exec(Option_t* option)
{ {

// For data produced without AliESDEvent
AliESD* old = fESD->GetAliESDOld();
if (old) fESD->CopyFromOldESD(); py

}

Attention: - PDC06 Data (v4-04) needs specially patched ESD.par or libESD.so
- FMD branch has to be switched off

What about AOD or Kinematics
Analysis ?

• Same schema works for AOD analysis
– TChain contains AOD files
– User connects AliAODEvent to chainUser connects AliAODEvent to chain

• … and even for Kinematics
Add li t fil t TCh i– Add galice.root files to TChain

– This “triggers” correct loop over filesgg
– Obtain AliMCEvent from the manager as usual.

(Ch. Klein-Bösing)

Common AOD Access HandlingCommon AOD Access Handling

AliAnalysisManager AliVirtualEventHandler

AliAODHandler AliAODEvent

AliAODHandler* aodHandler = new AliAODHandler();
aodHandler->SetOutputFileName("aod.root");

AliAnalysisManager *mgr
= new AliAnalysisManager(‘Analysis Train’, ‘Test’);

mgr->SetEventHandler(aodHandler);mgr->SetEventHandler(aodHandler);

AliAnalysisDataContainer *coutput1 = mgr->CreateContainer(‘AODTree’,
TTree::Class(),(),
AliAnalysisManager::kOutputContainer, "default");

U A l i C d O t t D tUser Analysis Code: Output Data

void AliAnalysisTaskXYZ::CreateOutputObjects()
{{
// Create the output container
//
// Default AOD// Default AOD

AliAODHandler* handler = (AliAODHandler*)
((AliAnalysisManager::GetAnalysisManager())-
>GetEventHandler());>GetEventHandler());

fAOD = handler->GetAOD();
fTreeA = handler->GetTree();
fJetFinder->ConnectAOD(fAOD);fJetFinder->ConnectAOD(fAOD);

}

Common Kinematics Inp tCommon Kinematics Input
• Before via class AliAnalysisTaskRL

Man dependences o tside anal sis– Many dependences outside analysis
– Requires implementation of specific MC

analysis tasks.
• NowNow

– Transparent usage of MC information via
AliMCEvent combiningAliMCEvent combining

• Kinematics Tree
T E (E t H d)• TreeE (Event Headers)

• Track References

AliAnalysisManager AliVirtualEventHandler AliVEvent

AliMCEventHandler AliMCEventAliMCEventHandler AliMCEvent

AliMCEventHandler* mcHandler = new AliMCEventHandler();

li l iAliAnalysisManager *mgr
= new AliAnalysisManager(‘Analysis Train’, ‘Test’);

mgr->SetMCtruthEventHandler(mcHandler);

User Anal sis Code MC tr thUser Analysis Code: MC truth

void AliAnalysisTaskXYZ::Exec(Option_t* option)
{
// During Analysis
AliMCEvent* mc = mgr->GetMCEventHandler()->MCEvent();
Int_t ntrack = mc->GetNumberOfTracks();
for (Int_t i = 0; i < ntrack; i++)
{{

AliVParticle* particle = mc->GetTrack(i);
Double_t pt = particle->Pt();

}}
}

S d T kR fSome words on TrackReferences
• TParticle written in TreeK carries only limited information

about the transport MC truth.
– Only properties at production point
– Some MC truth is not stored

• On the other hand AliHit contains MC truth but also
depends on detector acceptance and response

S MC t th i l t– Some MC truth is lost
• Solution AliTrackReference in tree TreeTR

Particle information at user defined reference plane crossings– Particle information at user defined reference plane crossings
– Used in ITS, TPC, TRD, TOF, MUON, FRAME

To be discussed:
Are the present Track References useful for efficiency and acceptance studies ??

Problems with the previous p
implementation

• Track reference information spread over
branchesbranches
– One branch per detector

• TreeTR has structure different from TreeK
TreeK: one entry per particle– TreeK: one entry per particle
• Primaries and secondaries

T TR t i– TreeTR: one entry per primary
• Information about one particle has to beInformation about one particle has to be

collected from several branches.

P t I l t tiPresent Implementation
• One branch for track references instead of several.

– Detectors identified by new data member fDetectorId.
Synchronize TreeK and TR• Synchronize TreeK and TR
– Reorder the tree in a post-processor after simulation of each event
– Executed automatically on the flight when old data is read

TreeK
AliMCEventAliMCEvent

•Header
•Particles T Ea t c es
•Track Refs TreeE

TreeTR

AliMCParticle
AliVParticle

AliMCParticle
AliMCParticle

• Wraps TParticle
• Should also provide the TrackReference and vertex

information
– What is here the commonality with AliESDtrack and

AliAODtrack ?
• Technical problem:

– AliMCParticle is created on the flight and has to be
b ff d i AliMCE tbuffered in AliMCEvent

– No problem for TParticle part (AliStack already contains
the mechanism) but what about AliTrackReference whichthe mechanism), but what about AliTrackReference which
is stored per particle inside a TClonesArray ?

ESD FilterESD Filter

AliAnalysisTask

AliAnalysisFilterTask AliFilter TList AliCuts
AliCutsy AliCuts

AliCutsAliCuts
AliCuts

IsSelected(TObject *)

UInt t interpreted as a bit field storing filter informationUInt_t interpreted as a bit-field storing filter information
Bit n 0/1 => Filter n no/yes

Prototype ! Requirements of the Effeciency and Acceptance Framework are being discussed.

TestTrainTestTrain

AliFilt AliCutsAliFilter AliCuts
AliCutsAliCuts

AliCuts
ESDtrackCuts

AliAnalysisTask
ESDfilter

AliAnalysisTask
Jets

ESD

ESDfilter Jets

AliAODTrack

AliAODJetAliAODJet

N t St (f J l Offli W k)Next Steps (from July Offline Week)

• Collect, integrate, assemble and test existing
analysis tasks (started but not finished)analysis tasks (started but not finished)

• Collect requirements on
AOD (d M Old b)– AOD (done, M. Oldenburg)

– Cuts for filters (tracks, V0, Kinks) (ongoing, R. Vernet)
N b f ESD di l (1 f fl l i)– Number of ESD reading cycles (>1 for flow analysis)

• Define possible interactions with efficiency
calculation framework (done, see Silvia’s talk)

• MC information handling g
– Kinematics, reference hits (almost done)

Other req irementsOther requirements
• Event merging, for example Pythia+HIJING

E t i i• Event mixing
– Both should be relatively easy to implement y y p

using the VEventHandler
• For PROOF possibility to connect Trees to• For PROOF, possibility to connect Trees to

files and merge mechanism for file resident
objectsobjects.
– Now a show stopper. Tests are only possible pp y p

on relatively small event samples.

