
ArCond

a front-end framework for Condor 
and parallel data processing using a distributed data 

storage

Sergei Chekanov (ANL)

Tier3 meeting, ANL 
October 2009



2
 S.Chekanov (ANL). ArCond for Tier3 computer clusters

 

2

Condor

Example: 
Assume 100 files located on some storage. We 
want to run 5 parallel jobs. 
Parallelism is achieved by slitting 100  files on 5 
subsets, assigning each job to certain subset. 

set1

set2

set3

set4

set5

Data server 
(NFS,AFS)

Processing cores

Network

Needed features: 
1) identify files on a file server,
2) split input file list
3) assign each core to each data list
4) return results and combine outputs

job1

job2

job3

job4

job5

“Vertical scheme”

Condor is known package for batch clusters:

  Allows parallelization  of   jobs
  Provides scheduling policy 
  Defines priorities
  Resource allocation

Ideal engine for Linux clusters
But when  it comes to analysis using     
input data, it requires additional features

All of this should be done for 
Athena  programs, ROOT/C++, Monte Carlo 
generation, NLO calculation  etc. etc.



3
 S.Chekanov (ANL). ArCond for Tier3 computer clusters

 

3

Hitting the network limits

set1

set2

set3

set4

set5

Data server 
(NFS,AFS)

Processing cores

Network
job1

job2

job3

job4

job5

“Vertical scheme”

 For a central file storage, network is used for I/O (at run-time)

 For typical Tier3, network bandwidth is 1 Gb or less

 1Gp usually means  400-500 Mbs due to various other limitations

  > 20 running athena jobs accessing data on the same  file storage  causes a significant 
performance penalty

 Typical speed ~3 times slower compare to jobs accessing local disk I/O

  ~20 running jobs accessing ANL NFS leads to non-operational cluster 

 For ROOT ntuples, the network I/O limit is  4-5 jobs

Solution? 

- Equally partition data

- Redistribute data portions between 
  computers with similar specifications

- Run jobs on data stored on  local disks

- Do not use network for data access



4
 S.Chekanov (ANL). ArCond for Tier3 computer clusters

 

4

Improving performance

set1

set2

set3

set4

set5

Processing cores 
and data disks on 
the same computer

job1

job2

job3

job4

job5

“Horizontal scheme”

“Divide and conquer” principle for low-cost clusters with commodity networks (<1 Gb):

  Jobs should run on the same computer where data are
  Avoid any network load at run time. Use network for job submission/retrieval only 
 Things are getting  more complicated for Condor submissions

Network

computer1computer1

computer2

computer3

computer4

computer5

submitter

Features to be added for Condor processing: 

1) identify files located on different computers
     - data discovery tool

2) Upload data on different computers
      -  data splitter



PC farm challenge for T3g sites

 A complete T3G PC farm setup is given on the ANL ASC page (atlaswww.hep.anl.gov):

Article in ATLAS 
e-News

More details:  “A PC farm for ATLAS Tier3 analysis”
S.C.,  R.Yoshida,  ATL-COM-GEN-2009-016



6
 S.Chekanov (ANL). ArCond for Tier3 computer clusters

 

6

ArCond – Argonne's Condor

 ArCond does all above and complements Condor for  data-intensive  jobs with 
input data.

  Python front-end for Condor for: 

 job submission, data discovery, results retrieval

 Can be used for athena packages, ROOT/C++ jobs, MC generation, etc.

 Can be used for a central storage or distributed storage

 Does not requite extra services. No maintenance

 Data discovery is done using Condor itself ('pilot jobs') 
 Better solution -  cron  jobs to build lists with local files (optional)

 Developed and supported at ANL ASC

 available version 1.4

 Web site: http://atlaswww.hep.anl.gov/asc/arcond/

http://atlaswww.hep.anl.gov/asc/arcond/


7
 S.Chekanov (ANL). ArCond for Tier3 computer clusters

 

7

ArCond – Argonne's Condor

> arcond 

Reads a configuration file with:

 ATLAS release version

 input directory with input files

 athena package name

Splits jobs to be run in parallel: N=N(PC boxes) x N(cores)

Builds a database with input files and associates each AOD file  with specific box

Splits data lists, prepare submission scripts, submits to each box with local data

Shell submission script defines execution sequence

 may include  multiple athena runs etc.

Compiles programs  using either NFS-based ATLAS software release or locally in-
stalled release

When jobs are ready, the output is copied  to the submission directory

 optional, depends what do you put in shell script

 output root  files merged automatically



8
 S.Chekanov (ANL). ArCond for Tier3 computer clusters

 

8

Benchmarks

Running over AOD files 
 0.5M events /h  

Fast MC simulation and on the fly analysis
 1.5M events /h   

Running over C++/ROOT ntuples
 1000M events /h   (1M events / min for 1 core)

Generating MC truth ntuples
 2.5M events /h 

AOD production (generating & reconstructing MC events)
 120 events /h 

Types of job submissions & benchmarks for 24 cores Harpertown Xeon (5400), 2.2 Ghz

- 5000 jobs since 2008. Tested by ~20 users
        ~80% athena programs
        ~15% ROOT/C++
        ~5%   Fast MC simulation and full MC reconstruction
 
<0.01 failure rate

Note: 5500 (Nehalem) 
processors are ~100%  faster 
than Harpertown Xeon (5400)



9
 S.Chekanov (ANL). ArCond for Tier3 computer clusters

 

9

Running arcond

Before submitting a job, prepare a configuration file (“ arcond.conf”)

atlas_release=15.5.0

# events to process in each job
events = -1

# dir with input AOD files.
input_data = mc08.105802.JF17_pythia_jet_filter.recon.AOD.e347_s462_r541/AOD

# package directory on NFS
package_dir = /users/chakanau/testarea/14.2.21/analysis/PromptGamma

Prepare the job option file

Check data availability as:
  arc_ls <dataset>                            Ready to submit!

scan all 
subdirectories



10
 S.Chekanov (ANL). ArCond for Tier3 computer clusters

 

10

chakanau@atlas16:submit$ ./arcond
################ ARCOND v1.2 ####################
##                 ANL ASC                     ##
#################################################
 Input configuration=arcond.conf 
---> Input data located at = /data1/mc/mc08.105802.JF17_pythia_jet_filter.recon.AOD.e347_s462_r541/AOD
---> Checking computing cores
     -->1 PC node=atlas51.hep.anl.gov with=8 cores found
     -->2 PC node=atlas52.hep.anl.gov with=8 cores found
     -->3 PC node=atlas53.hep.anl.gov with=8 cores found
---> Total number of found cores= 24
Start data ArCond data discovery tool?
-> To discover data on-fly, type "f"
-> To discover data using ArCond static database created every 24h, say "s"
-> Do not discover data, say "n"
---> Checking claimed CPUs
---> Total number of claimed CPU cores= 0
---> Building the database on all nodes with input AOD/DPD files
---> Checking for duplicate input data files
    --> PC node= atlas53.hep.anl.gov   has  1987  input files
    --> PC node= atlas51.hep.anl.gov   has  1964  input files
    --> PC node= atlas52.hep.anl.gov   has  1722  input files
    --> ## SUMMARY: Total number of input files = 5673
Project file:/users/chakanau/work/submit/Job/PromptGamma.tgz was found.
Do you want to rebuild it (y/n)? y
---> Package submission file = Job/PromptGamma.tgz
---> Package submission log file = Job/PromptGamma.log
---> Number of events in one job = -1
---> Atlas release = 15.5.0
---> 24  jobs will be submitted to = 3 PC boxes
Do you want to prepare the submission scripts (y/n)? y
Submit all prepared jobs to the PC farm? (y/n)

Submitting job..

chakanau@atlas16:submit$ ./arcond
################ ARCOND v1.0 ####################
##                 ANL ASC                     ##
#################################################
 Input configuration=arcond.conf 
---> Input data located at = /data1/mc/mc08.105802.JF17_pythia_jet_filter.recon.AOD.e347_s462_r541/AOD
---> Checking computing cores
     -->1 PC node=atlas51.hep.anl.gov with=8 cores found
     -->2 PC node=atlas52.hep.anl.gov with=8 cores found
     -->3 PC node=atlas53.hep.anl.gov with=8 cores found
---> Total number of found cores= 24
Start data ArCond data discovery tool?
-> To discover data on-fly, type "f"
-> To discover data using ArCond static database created every 24h, say "s"
-> Do not discover data, say "n"
---> Checking claimed CPUs
---> Total number of claimed CPU cores= 0
---> Building the database on all nodes with input AOD/DPD files
---> Checking for duplicate input data files
    --> PC node= atlas53.hep.anl.gov   has  1987  input files
    --> PC node= atlas51.hep.anl.gov   has  1964  input files
    --> PC node= atlas52.hep.anl.gov   has  1722  input files
    --> ## SUMMARY: Total number of input files = 5673
Project file:/users/chakanau/work/submit/Job/PromptGamma.tgz was found.
Do you want to rebuild it (y/n)? y
---> Package submission file = Job/PromptGamma.tgz
---> Package submission log file = Job/PromptGamma.log
---> Number of events in one job = -1
---> Atlas release = 14.5.1
---> 24  jobs will be submitted to = 3 PC boxes
Do you want to prepare the submission scripts (y/n)? y
Submit all prepared jobs to the PC farm? (y/n)

only for first 
submission!
(see next slide)

it was found since 
I've sent this 
package before

To run ArCond in silent  mode 
use: “arcond -allyes”



11
 S.Chekanov (ANL). ArCond for Tier3 computer clusters

 

11

Data discovery 

PC farm users have several choices for data discovery:

“s” - to discover data using a small flat-file database
 Updated every night
 Implementation: Each slave note runs a cron job

 (based on find “/data1/  -type f > /users/condor/$date.txt”)

 for 10000 AOD files, run time is 3-5 sec.

 Copied and stored on NFS
 When a user runs “./arcond”, always the latest database is used
 Also can be used to recover  data when PC box fails (do not have experience yet)

“f” - to discover data “on-fly”
 If data have been copied recently, the database may not exists
 Then arcond sends a small script on each PC boxes and brings data list back
 Usually takes ~20-30 sec (assuming that Condor is not busy)

“n” if the user selected “s” and “f” from previous runs, there is no need to 
discover data (previous data list will be used)

 

              Simple and robust. So far required no attention from admin. 

Several choices:

“s” - to discover data using a small flat-file database
 Updated every night
 Implementation: Each slave note runs a cron job

 (based on find “/data1/  -type f > /users/condor/$date.txt”)

 for 10000 AOD files, run time is 3-5 sec.

 Copied and stored on NFS
 When a user runs “./arcond”, always the latest database is used
 Also can be used to recover  data when PC box fails (do not have experience yet)

“f” - to discover data “on-fly”
 If data have been copied recently, the database may not exist
 Arcond sends 'pilot' jobs on each PC boxes and generates lists with input files
 Usually takes ~20-30 sec (assuming that Condor is not busy)

“n” if the user selected “s” and “f” from previous runs, there is no need to 
discover data (previous data list will be used)

 

              Simple and robust. So far required no attention from admin. 



12
 S.Chekanov (ANL). ArCond for Tier3 computer clusters

 

12

Getting data

So far is based on dq2-get:

 Works  very well

 Keeping about 20k AOD/DPD files, 45 MC data sets distributed between 3 computer nodes 

Main issue is how to redistribute a data set between different nodes

 Used solution:

 Get data on one node, use ArCond splitter to divide data. Copy sets on other nodes

A better solution is to add a “splitting” functionality to dq2-get

ArCond provides a front-end of dq2-get which allows to divide sample during downloads 

– arc_ssh -h hosts-file -l <user-name> -o  /tmp/log "exec send_dq2.sh”

• Gets a list of files. Splits in ranges depending on number of slaves. 

• Executes dq2-get on each slave node using this list. 

– Tested using 5 Linux boxes  (five  dq2-get threads). For many nodes, the number of threads in-
cluded by dq2-get can be reduced 

– 3-4 TB/day for several Tier2 & BNL Tier1

 Will explore other solutions “subsciption”?, xrootd? Setting  a test cluster



13
 S.Chekanov (ANL). ArCond for Tier3 computer clusters

 

13

Other ArCond features
Built-in help

  Example: List data files on all nodes:

  arc_ls <dataset>
  Prints location of each file  (computer, directory)



14
 S.Chekanov (ANL). ArCond for Tier3 computer clusters

 

14

Data recovery

One feature of ArCond is simplicity
 No need to be an IT expert
 Only basic knowledge of Linux
 No any particular “file system”
 Extends desktop environment + replace condor commands
 All operations are transparent  and do not require extra knowledge

Did not exercise data recovery  when a disk or a computer fails
 datasets lost fractions of files (and less CPU)
 ArCond does not offer solution.  But data recovery is simple!

 Main steps:
 arc_ls  /data1   - lists all files located on the disk  /data1
 Consider only files on failed node
 Make a list with missing files
 Get lost data from the grid (dq2-get) or a central storage
 All of this require basic knowledge of bash,python,sed etc..
 Can be provided in future



15
 S.Chekanov (ANL). ArCond for Tier3 computer clusters

 

15

Summary

 Experience with “distributed” analysis & ArCond model for more than a year

 No problems found, fault rate <0.01
 Tested by ~20 users
 Used for 24-core PC farm

 One prominent feature – simplicity.  No need to be an IT expert. No maintenance

 knowledge of Linux is sufficient

 ArCond version 1.4:

 Tested for NFS3/NFS4  and most recent Condor (7.2.3)

  A full-scale computer  farm + Tier3 integration cluster are under development

  The  most outstanding issue is how to redistribute data between computers

 ArCond offers several choices
 Subscription, xrootd will be tested. Xrootd  can  be merged with ArCond


	Title
	motivation
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15

