PROOF in Atlas Tier 3 model

Sergey Panitkin

BNL

BROOKHIAEN

NATIONAL LABORATORY

ATLAS

Sergey Panitkin

Outline

Part One: Proof in T3 environment
Part Two: I/O Issues in analysis on multi-core hardware

Sergey Panitkin

pd Wl A
|‘*|" 'E

.=

E'i" ATLAS Analysis Model — analyzer view

&,

Contents defined by physics group(s)
- made in official production (TO)
- remade periodically on T1

Produced outside official

production on T2 and/or T3
(by group, sub-group, or Univ. group)

TO/T1 { ™ l -
Streamed thln/ : ISt

> skim/ —| D'PD |— stage —*{ D"PD oot 1
ESD/AOD ' slim ! l . —>E

ESD/AOD, D'PD, D?PD - POOL based

D3PD - flat ntuple

Jim Cochran’s slide about the Analysis Model

'Post-AOD analysis in Atlas

. Advantages of DPDs for T3:
. Faster to analyze due to a smaller size and faster /O

. Less demand on storage space and infrastructure (1 year worth
of DPD ~40TB)

. Well suited for T3 types of analyses and scales
. How to make Tier 3 affordable, but still effective for Atlas analysis?
. How to analyze ~1 09 DPD events efficiently in Root?
. How to ensure fast analysis turnaround?

. Use PROOF! Parallel Root Facility - Root’s native system for parallel
distributed analysis!

Sergey Panitkin 4

PROOF Advantages

+ Native to Root

+ [Easy toinstall

+ Comes with build-in high performance storage solution - Xrootd
+ Efficient in extracting maximum performance from cheap hardware
+ Avoids drawbacks of “classical”’ batch systems

+ Scalable in many ways, allows multi-cluster federations

+ Transparent for users. System complexity is hidden

+ Comes with its own event loop model (TSelector)

+ Development driven by physics community

+ Free, open source software

+ Can nicely coexist with batch queues on the same hardware

Sergey Panitkin 5

Native to Root

« A system for the interactive or batch analysis of very large sets of
Root data files on a cluster of computers

« Optimized for processing of data in Root format

« Speed up the query processing by employing inherent parallelism in
event data

+ Parallel Root Facility, originally developed by MIT physicists about 10
years ago

+ PROOF is an integral part of Root now.
+ Developed and supported by Root team.
« Distributed with Root. If you installed Root you have Proof.

Sergey Panitkin 6

PROOF and Xrootd

b, T el 30 i [
= A Y

+ One of the main advantages of modern PROOF implementation is its
close cooperation with Xrootd

+ PROOQF s just a plug-in for Xrootd

« Typically PROOF uses Xrootd for communication, clustering, data
discovery and file serving

+ Note that PROOF can be used without Xrootd based storage. It works
with many types of SE (dCache, Lustre, NFS boxes, etc...)

+ But PROOF is at its best when Xrootd provides high performance
distributed storage

+ When PROOF is used in conjunction with Xrootd SE it automatically
ensures data discovery and local data processing: a job running on a
given node reads data stored on that node. This typically provides
maximum analysis rate and optimal farm scalability.

Sergey Panitkin 7

PROOF and Xrootd

General section that applies to all servers

#
all.export /atlas

if redirector.slac.stanford.edu

all.role manager

else

all.role server

fi

all .manager redirector.slac.stanford.edu 3121
Cluster management specific configuration

#

cms.allow *.slac.stanford.edu

xrootd specific configuration

#

xrootd.fslib /opt/xrootd/prod/lib/libXrdOfs.so
xrootd.port 1094

Load the XrdProofd protocol:

if exec xrootd

xrd.protocol xproofd:1093
/opt/xrootd/prod/lib/libXrdProofd. so
fi

Easy configuratioon

A few extra lines in Xrootd config.
file
Plus a simple PROOF config. file

Node1 master

Node?2 worker
Node?2 worker
Node3 Worker
Node3 Worker

Efficient Processing

'- i . ir :_‘-ﬁ| II.'.
« Efficient in extracting maximum performance from (cheap) hardware

» Easy, self-organized clustering

+ Well suited for (if not geared to) analysis farms with distributed local
storage

+ Local data processing is encouraged — automatic matching of code with
data. This typically means optimal I/O

« A job is automatically split in optimal number of sub-jobs

« All jobs are dynamically managed to insure maximum resource
utilization

+ Load is actively managed and balanced by master (packetizer)
« Pull architecture for load management

+ When local processing is exhausted remote access automatically begins
so all CPUs are utilized

Sergey Panitkin 9

Efficient processing

+ The PROOF packetizer is the heart of the system

« It runs on the client/master and hands out work (packets) to the
workers

+ Packet can be a few hundred events
+ The packetizer takes data locality and storage type into account
+ Matches workers to local data when possible

+ By managing workers load it makes sure that all workers end at the
same time

Pull architecture
workers ask for work, no complex worker state in the master

« In push approach last jOb determines the total execution time

+ Basically a Landau distribution > ! I
+ Example:

|
| 1

«+ Total expected time 20h, target 1h
+ 20 sub-jobs, 1h +/- 5%

10000 toy experiments

Entrizs 10000
10 1 Memn 2673
1 RME 2 SEB

% Long tails, e.g. 15% > 4h
ﬂL

. HW’”L”ULW/

10 12 14 1E i= i

@ 2 4 & B

Time of slowest sub-job

Courtesy Fons Rademakers, Gerri Ganis

Efficient Processing

Akira’s talk about ROOT analysis comparison at the Jamboree

PROQOF results

Chart 1

So0k bz 100 KHz analysis rate

TSelector_Ntuple_PROOF _Xrootd Zee

TSelector Ntuple PROOF_Zee

TSelector ARA_PROOF Zee expect few thousand, unresolved issues...

TSelector_ARA_PROOF _Xrootd_Zee 68Hz expect few thousand, unresolved issues...

*Akira Shibata reported his tests with
1.00 27.83 774.60 21558.25 600000.00 HZ PROOF

*Root analysis benchmark package
® |0 algorithm loop. Initialization 27s with ntuple, 120s

with ARA. .
® Used 36 nodes. Xrootd has an order of magnitude improvement on *Good F?SU"S for Ntuple based analySIS
ntuple analysis. Overall gain ~30 times faster but ~3 times without «Xrootd improves I/O performance
Xrootd.
® ARA/TSelector not returning sensible results. Hope to solve this
week..
3 Site Jamboree - August 25, 2008 akirashibatafBnyu.edu ‘?

o2

Sergey Panitkin 12

Scalability

TCP/IP

—— Unix Socket

Courtesy Fons Rademakers, Gerri Ganis

Scalability

...To PROOF Lite...

—— Unix Socket

Perfect for multi-core desktops/laptops

Courtesy Fons Rademakers, Gerri Ganis

PROOF Lite

+ PROOF optimized for single many-core machines
« Zero configuration setup (no config. files and no daemons)
+ Workers are processes and not threads for added robustness

+ Like PROOF it can exploit fast disks, SSD’s, lots of RAM, fast
networks and fast CPU’s

+ Once your analysis runs on PROOF Lite it will also run on PROOF
+ Works with exactly the same user code as PROOF

Sergey Panitkin 15

Scalability

....To Federated Clusters.... Adapts to wide area

Client Master Slaves Files virtual clusters

| Super- Sub- |
gmaster masters

i =
Commands, , / ,
1= =P

sctipts

@ i —
- Ao Output list :
S (histograms, .)

/. «— separated domains,
heterogeneous
machines

Super master is users' single point of entry. System complexity is
hidden

Automatic data discovery and job matching with local data

16

Support and documentation

+ Main PROOF Page at CERN, PROOF worldwide forum
« http://root.cern.ch/twiki/bin/view/ROOT/PROOF
+ USAtlas Wiki PROOF page
« http://www.usatlas.bnl.gov/twiki/bin/view/ProofXrootd/WebHome

+ Web page/TWIKI at BNL with general farm information, help, examples,
tips, talks, links to Ganglia page, etc.

+ http://www.usatlas.bnl.gov/twiki/bin/view/AtlasSoftware/ProofTestBed
+ Hypernews forum for Atlas PROOF users created
hn-atlas-proof-xrootd@cern.ch
https://hypernews.cern.ch/HyperNews/Atlas/get/proofXrootd.html

Sergey Panitkin 17

PROOF at LHC

+ will run PROOF on CAF for calibrations, alignment, analysis, etc
+« PROOF farm at GSI T2
+ Various local T3s

+ Integration of PROOF with AliRoot

+ PROOF farm at T2 at Munich LMU (and German NAF?)
+ PROOF farm(s) at BNL T1

+ PROOF test farm at UTA T2

« Proof test farm at Universidad Autonoma de Madrid T2

+ PROOF farm at Wisconsin T3

+ PROOF at NAF Germany

+ PROOF cluster at Purdue - USCMS T2

+ PROOF farm at Oviedo

+ Planned farms at ETH and PSI (T3 or T2)

Sergey Panitkin

3| B "
Y 1#!*

Part Two /0 Issues

L

+ PROOF can effectively exploit local processing (I/O localization)

+ How does it work with multi-core hardware?

+ When disk subsystem becomes a bottleneck?

+ Next few slides are from my CHEPO9 talk about PROOF and SSDs:

+ It can be found here:

http://indico.cern.ch/contributionDisplay.py?contribld=395&sessionld=
61&confld=35523

Sergey Panitkin 19

Read rate vs number of PROOF workers. Single Node

——— CPU Limited

w L

@ 80— u l/

= - |=m18SD

o] -

T 70— |« 1HDD ! -

0 -

E 60—

i = Dual quad core
50— s 16GB RAM
40—

30—
- u H->4l analysis. 3.4M events
201 N
-]
gt s ‘r ; ; |
2 4 6 8 10 12

Number of workers

SSD is about 10 times faster at full load

Best HDD performance at 2 worker load

Single analysis job generates ~10 -14 MB/s load with given hardware

Sergey Panitkin

20

-]

3 B
l‘l'l'

Intéractlve analysis. SSD vs HDD

> Workeris a PROOF parallel analysis job CPU limited

Read rate vs number of PROOF workers per node /
25
s *r . 2.
= | | = ssD1disk :
S 20— | « HDD 1 disk -
N n
15— .
N !
10_—
- [|
B Single variable scan. Single node
5 a
B i & 'y Fy & & & 4 ‘
I_ IIII|IIII|IIII|IIII|IIII|IIII|IIII|IIII|IIII|II

|
1 2 3 4 5 6 7 8 9 10
Number of workers

> SSD holds clear speed advantage
> ~Up to10 times faster in concurrent read scenario

Sergey Panitkin 21

Read rate vs number of PROOF workers. Single Node

3 - R
=100— | » 2sspRraDO = 4
¥ o
® | | = 1ssp
o u
5 80— i . =
60—
I~ F Y
= |
40—
- H->4l analysis. 3.4M events
: i
20—
M
= 1 1 | 1 1 1 | 1 1 1 | 1 1 1 | 1 1 1 | 1 1 1 | I
2 4 6 8 10 12

Number of workers

SSD 2 disk RAID 0 shows little impact up to 4 worker load

Sergey Panitkin

22

i) .
H

o | :
"‘,*;}' S

|
)

H->4l analysis. HDD: single vs RAID

» mi 9

)
|

Read rate vs number of PROOF workers per node

»w 30— .
11] — [|
= _
g " .
o - n
= 25— . -
o
14 B (]
— B HDD 3 disks -raid 0
20—
- 4 HDD 1 disk
| A
15__ H->4l analysis
- m A
Y i
10— 4 A
I_ IIII|IIII|IIII|IIII|IIII|IIII|IIII|IIII|IIII|II

L
1 2 3 4 5 6 7 8 9 10
Number of workers

3x750 GB HDD RAID peaks at ~3 worker load
Single HDD disk peaks at 2 worker load, then performance rapidly deteriorates

Sergey Panitkin 23

Sergey Panitkin 24

able-rr- Eh- H

"@ "" The baS|c PROOF+Condor Integration

il

Normal
Production
Condor jobs

Condor Master

COD
requests

PROOF
requests

PROOF jobs -

The local storage
on each machine

PROOF Master

Sergey Panitkin o

The ROOT Data Model

Trees & Selectors

Output list

H-E-E-i

Read needed

Leat

R (= o How to use PROOF

V- P

PROOF is designed for analysis of independent objects, e.g. ROOT Trees
(basic data format in partice physics)

Files to be analyzed are put into a chain
(TChain) or a data set (TDSet), e.g. collection of files

Analysis written as a selector

Input/Output is sent using dedicated lists

If additional libraries are needed, these have to be distributed as
a "package”

Input Files
(TChain) Analysis Output
(TSelector) (TList)
Input

(TList)

TSelector

-
- -

« TSelector is a framework for analysis of event like data

« You derive from TSelector class and implement member functions with
specific algorithm details

+ During processing Root calls your functions in a predefined sequence
+ TSelector skeleton can be automatically generated

+ ROQOT provides the TTree::MakeSelector function to generate a skeleton class
for a given TTree.

root > TFile *f = TFile::Open("treefile.root")
root > TTree *t = (TTree *) f->Get("T")
root > t->MakeSelector("MySelector")
root > .lls MySelector*
MySelector.C MySelector.h

Sergey Panitkin 28

