
PROOF in Atlas Tier 3 model

Sergey Panitkin

BNL

Sergey Panitkin
1

Outline

Part One: Proof in T3 environment
Part Two: I/O Issues in analysis on multi-core hardware

Sergey Panitkin
2

Contents defined by physics group(s)
- made in official production (T0)
- remade periodically on T1

Produced outside official
production on T2 and/or T3
(by group, sub-group, or Univ. group)

Streamed
thin/
skim/ D1PD

1st

stage DnPD root histo

ATLAS Analysis Model – analyzer view

T2 T3T0/T1

3

ESD/AOD, D1PD, D2PD - POOL based

D3PD - flat ntuple

ESD/AOD
skim/
slim

D PD stage

anal

D PD root histo

Jim Cochran’s slide about the Analysis Model

Post-AOD analysis in Atlas

• Advantages of DPDs for T3:

• Faster to analyze due to a smaller size and faster I/O

• Less demand on storage space and infrastructure (1 year worth
of DPD ~40TB)

Well suited for T3 types of analyses and scales

Sergey Panitkin 4

• Well suited for T3 types of analyses and scales

• How to make Tier 3 affordable, but still effective for Atlas analysis?

• How to analyze ~109 DPD events efficiently in Root?

• How to ensure fast analysis turnaround?

• Use PROOF! Parallel Root Facility - Root’s native system for parallel
distributed analysis!

PROOF Advantages

u Native to Root

u Easy to install

u Comes with build-in high performance storage solution - Xrootd

u Efficient in extracting maximum performance from cheap hardware

u Avoids drawbacks of “classical” batch systems

u Scalable in many ways, allows multi-cluster federations

u Transparent for users. System complexity is hidden

u Comes with its own event loop model (TSelector)

u Development driven by physics community

u Free, open source software

u Can nicely coexist with batch queues on the same hardware

Sergey Panitkin 5

Native to Root

u A system for the interactive or batch analysis of very large sets of
Root data files on a cluster of computers

u Optimized for processing of data in Root format

u Speed up the query processing by employing inherent parallelism in
event data

u Parallel Root Facility, originally developed by MIT physicists about 10 u Parallel Root Facility, originally developed by MIT physicists about 10
years ago

u PROOF is an integral part of Root now.

u Developed and supported by Root team.

u Distributed with Root. If you installed Root you have Proof.

Sergey Panitkin 6

PROOF and Xrootd

u One of the main advantages of modern PROOF implementation is its
close cooperation with Xrootd

u PROOF is just a plug-in for Xrootd

u Typically PROOF uses Xrootd for communication, clustering, data
discovery and file serving

u Note that PROOF can be used without Xrootd based storage. It works
with many types of SE (dCache, Lustre, NFS boxes, etc...)with many types of SE (dCache, Lustre, NFS boxes, etc...)

u But PROOF is at its best when Xrootd provides high performance
distributed storage

u When PROOF is used in conjunction with Xrootd SE it automatically
ensures data discovery and local data processing: a job running on a
given node reads data stored on that node. This typically provides
maximum analysis rate and optimal farm scalability.

Sergey Panitkin 7

PROOF and Xrootd
General section that applies to all servers
#
all.export /atlas

if redirector.slac.stanford.edu
all.role manager
else
all.role server
fi
all.manager redirector.slac.stanford.edu 3121
Cluster management specific configuration

Easy configuratioon

A few extra lines in Xrootd config.
file
Plus a simple PROOF config. file

Node1 master

8

Cluster management specific configuration
#
cms.allow *.slac.stanford.edu
xrootd specific configuration
#
xrootd.fslib /opt/xrootd/prod/lib/libXrdOfs.so
xrootd.port 1094

Load the XrdProofd protocol:
if exec xrootd
xrd.protocol xproofd:1093
/opt/xrootd/prod/lib/libXrdProofd.so
fi

Node2 worker
Node2 worker
Node3 Worker
Node3 Worker

Efficient Processing

u Efficient in extracting maximum performance from (cheap) hardware

u Easy, self-organized clustering

u Well suited for (if not geared to) analysis farms with distributed local
storage

u Local data processing is encouraged – automatic matching of code with
data. This typically means optimal I/O

A job is automatically split in optimal number of sub-jobsu A job is automatically split in optimal number of sub-jobs

u All jobs are dynamically managed to insure maximum resource
utilization

u Load is actively managed and balanced by master (packetizer)

u Pull architecture for load management

u When local processing is exhausted remote access automatically begins
so all CPUs are utilized

Sergey Panitkin 9

Efficient processing

u The PROOF packetizer is the heart of the system

u It runs on the client/master and hands out work (packets) to the
workers

u Packet can be a few hundred events

u The packetizer takes data locality and storage type into account

u Matches workers to local data when possible

u By managing workers load it makes sure that all workers end at the
same time

Pull architecture
workers ask for work, no complex worker state in the master

PROOF Pull Technology Avoids Long Tails

u In push approach last job determines the total execution time

u Basically a Landau distribution

u Example:

u Total expected time 20h, target 1h

u 20 sub-jobs, 1h +/- 5%

Time of slowest sub-job

Long tails, e.g. 15% > 4h

10000 toy experiments

Courtesy Fons Rademakers, Gerri Ganis

Efficient Processing

•Akira Shibata reported his tests with

Akira’s talk about ROOT analysis comparison at the Jamboree
http://indico.cern.ch/getFile.py/access?contribId=10&sessionId=0&resId=0&materialId=slides&confId=38991

100 KHz analysis rate

Sergey Panitkin

•Akira Shibata reported his tests with
PROOF
•Root analysis benchmark package

•Good results for Ntuple based analysis
•Xrootd improves I/O performance

12

Scalability

ROOT ROOT
ClientClient

PROOF PROOF
MasterMaster

PROOF PROOF
WorkerWorker

PROOF PROOF
WorkerWorker

xrootdxrootd//
xpdxpd

xrootdxrootd//
xpdxpd

xrootdxrootd//
xpdxpd

From PROOF…..

PROOF PROOF
WorkerWorker

xrootdxrootd//
xpdxpd

TCP/IP

Unix Socket

Node

Courtesy Fons Rademakers, Gerri Ganis

ROOT ROOT
Client/Client/
PROOF PROOF
MasterMaster

Scalability

PROOF PROOF
WorkerWorker

PROOF PROOF
WorkerWorker

…To PROOF Lite…

MasterMaster

PROOF PROOF
WorkerWorker

Unix Socket

Node

Courtesy Fons Rademakers, Gerri Ganis

Perfect for multi-core desktops/laptops

PROOF Lite

u PROOF optimized for single many-core machines

u Zero configuration setup (no config. files and no daemons)

u Workers are processes and not threads for added robustness

u Like PROOF it can exploit fast disks, SSD’s, lots of RAM, fast
networks and fast CPU’s

Once your analysis runs on PROOF Lite it will also run on PROOFu Once your analysis runs on PROOF Lite it will also run on PROOF

u Works with exactly the same user code as PROOF

Sergey Panitkin 15

Scalability

Adapts to wide area
virtual clusters

Geographically
separated domains,

….To Federated Clusters….

16

separated domains,
heterogeneous
machines

Super master is users' single point of entry. System complexity is
hidden
Automatic data discovery and job matching with local data

Support and documentation

u Main PROOF Page at CERN, PROOF worldwide forum

u http://root.cern.ch/twiki/bin/view/ROOT/PROOF

u USAtlas Wiki PROOF page

u http://www.usatlas.bnl.gov/twiki/bin/view/ProofXrootd/WebHome

u Web page/TWIKI at BNL with general farm information, help, examples,
tips, talks, links to Ganglia page, etc.

Sergey Panitkin 17

tips, talks, links to Ganglia page, etc.
u http://www.usatlas.bnl.gov/twiki/bin/view/AtlasSoftware/ProofTestBed

u Hypernews forum for Atlas PROOF users created

hn-atlas-proof-xrootd@cern.ch

https://hypernews.cern.ch/HyperNews/Atlas/get/proofXrootd.html

PROOF at LHC

u Alice

u will run PROOF on CAF for calibrations, alignment, analysis, etc

u PROOF farm at GSI T2

u Various local T3s

u Integration of PROOF with AliRoot

u Atlas

u PROOF farm at T2 at Munich LMU (and German NAF?)

u PROOF farm(s) at BNL T1

u PROOF test farm at UTA T2

u Proof test farm at Universidad Autonoma de Madrid T2

u PROOF farm at Wisconsin T3

u CMS

u PROOF at NAF Germany

u PROOF cluster at Purdue - USCMS T2

u PROOF farm at Oviedo

u Planned farms at ETH and PSI (T3 or T2)

Sergey Panitkin

Part Two: I/O Issues

u PROOF can effectively exploit local processing (I/O localization)

u How does it work with multi-core hardware?

u When disk subsystem becomes a bottleneck?

u Next few slides are from my CHEP09 talk about PROOF and SSDs:

u It can be found here: u It can be found here:
http://indico.cern.ch/contributionDisplay.py?contribId=395&sessionId=
61&confId=35523

Sergey Panitkin 19

H->4l analysis. SSD vs HDD

CPU Limited

Dual quad core
16GB RAM

Sergey Panitkin 20

SSD is about 10 times faster at full load
Best HDD performance at 2 worker load
Single analysis job generates ~10 -14 MB/s load with given hardware

Interactive analysis. SSD vs HDD

CPU limitedØ Worker is a PROOF parallel analysis job

Ø SSD holds clear speed advantage
Ø ~Up to10 times faster in concurrent read scenario

21Sergey Panitkin

H->4l analysis. SSD RAID 0

Sergey Panitkin 22

SSD 2 disk RAID 0 shows little impact up to 4 worker load

H->4l analysis. HDD: single vs RAID

Sergey Panitkin 23

3x750 GB HDD RAID peaks at ~3 worker load
Single HDD disk peaks at 2 worker load, then performance rapidly deteriorates

The End

Sergey Panitkin 24

The basic PROOF+Condor Integration

Normal
Production
Condor jobs

Condor Master

Condor + Xrootd + PROOF pool

PROOF jobs
PROOF Master

COD
requests

PROOF
requests

25

The local storage
on each machine

Sergey Panitkin

The ROOT Data Model
Trees & Selectors

preselectipreselecti
onon

analysianalysi
ss

OkOk

Output listOutput list

Process()Process() Terminate()Terminate()
-- Finalize analysisFinalize analysis
(fitting, ...)(fitting, ...)

Terminate()Terminate()
-- Finalize analysisFinalize analysis
(fitting, ...)(fitting, ...)

Begin()Begin()
-- Create histogramsCreate histograms
-- Define output listDefine output list

Begin()Begin()
-- Create histogramsCreate histograms
-- Define output listDefine output list

BranchBranch

BranchBranch

BranchBranch

BranchBranchLeafLeaf LeafLeaf

LeafLeaf LeafLeaf LeafLeaf

LeafLeaf LeafLeaf

EventEvent nn
Read needed Read needed
parts onlyparts only

ChainChain

Loop over eventsLoop over events

11 22 nn lastlast

How to use PROOF

u PROOF is designed for analysis of independent objects, e.g. ROOT Trees
(basic data format in partice physics)

u Files to be analyzed are put into a chain
(TChain) or a data set (TDSet), e.g. collection of files

u Analysis written as a selector

u Input/Output is sent using dedicated listsu Input/Output is sent using dedicated lists

u If additional libraries are needed, these have to be distributed as
a “package”

Analysis
(TSelector)

Input Files
(TChain) Output

(TList)
Input
(TList)

TSelector

u TSelector is a framework for analysis of event like data

u You derive from TSelector class and implement member functions with
specific algorithm details

u During processing Root calls your functions in a predefined sequence

u TSelector skeleton can be automatically generated

u ROOT provides the TTree::MakeSelector function to generate a skeleton class
for a given TTree. for a given TTree.

Sergey Panitkin 28

root > TFile *f = TFile::Open("treefile.root")
root > TTree *t = (TTree *) f->Get("T")
root > t->MakeSelector("MySelector")
root > .!ls MySelector*

MySelector.C MySelector.h

root > TFile *f = TFile::Open("treefile.root")
root > TTree *t = (TTree *) f->Get("T")
root > t->MakeSelector("MySelector")
root > .!ls MySelector*

MySelector.C MySelector.h

