
https://root.cern

ROOT
Data Analysis Framework

Integration of PyROOT and
Current Cppyy

Enric Tejedor

https://root.cern

Introduction

▶ What I did
● Took current Cppyy and integrated it into ROOT
● Basically replaced PyROOT with Cppyy

▶ Why I did it
● To understand better the structure of Cppyy and how it

compares to PyROOT’s
● To check if we can incorporate into PyROOT the new

features of Cppyy

2

Cppyy

▶ Automatic Python-C++ bindings generator
▶ Author: Wim Lavrijsen (former PyROOT developer)
▶ Aim: standalone layer on top of Cling

● Although not there yet, still ROOT-dependent

3

Cppyy: Structure
▶ A Cppyy installation is divided in 4 packages:

4

cppyy

CPyCppyy

cppyy_backend

PyPyCppyy

cppyy_cling

User API
Cling +
LLVM +

“MiniROOT”

Small Cling
wrapper

Type Converters,
Pythonizations, …

(Python/C API)

Mapping Cppyy to PyROOT

5

cppyy CPyCppyy cppyy_backend cppyy_cling

ROOT.py
cppyy.py

_pythonization.py

 /bindings/pyroot/src
 /inc ROOT

libPyROOT

libcppyy libcppyy_backend

Interpreter
boundary,
reflection calls

C
pp

yy
Py

R
O

O
T

Results of the Integration

❌ ROOT-specific pythonizations are no longer there
● TTree, TFile, TFX, interactive graphics, ...

❌ Test failures
● Python tests: 95 %
● Pyroot tutorials: 57 %

✓ New features

● Lambda variables
● Move semantics (r-value reference parameters)

6

Lambdas

▶ This works now:

7

>>> import ROOT
>>> ROOT.gInterpreter.ProcessLine(
"auto mylambda = [](int i) { std::cout << i << std::endl; };")
140518947094560L
>>> ROOT.mylambda
<cppyy.gbl.function<void(int)>* object at 0x35f9570>
>>> ROOT.mylambda(2)
2

Move Semantics

▶ This is also possible now (requires a fix in cling):

8

>>> import ROOT
>>> ROOT.gInterpreter.ProcessLine(
'void myfunction(std::vector<int>&& v) {
 for (auto i : v) std::cout << i << " ";
 }')
0L
>>> v = ROOT.std.vector(int)(range(10))
>>> ROOT.myfunction(ROOT.std.move(v))
0 1 2 3 4 5 6 7 8 9
>>> ROOT.myfunction(ROOT.std.vector(int)(range(10)))
0 1 2 3 4 5 6 7 8 9

https://sft.its.cern.ch/jira/browse/ROOT-9075

Next Steps

▶ Investigate test failures
● Check if there is any fundamental issue

▶ Understand how ROOT pythonizations could be brought back
● And new ones added

▶ Check whether we lost anything else in the migration
▶ Try with Python 3
▶ If no blockers are found, decide on how we could integrate

Cppyy and PyROOT package-wise

9

The Code

https://github.com/etejedor/root/tree/cppyy-integration

10

https://github.com/etejedor/root/tree/cppyy-integration

Backup Slides

Name Changes (PyROOT-Cppyy)

12

PyROOT Cppyy

MethodProxy CPPOverload

ObjectProxy CPPInstance

PropertyProxy CPPDataMember

PyROOT CPyCppyy

PyROOTType CPPScope

RootModule CPyCppyyModule

RootWrapper ProxyWrappers

TCallContext CallContext

Name Changes (PyROOT-Cppyy) (II)

13

PyROOT Cppyy

TClassMethodHolder CPPClassMethod

TConstructorHolder CPPConstructor

TCustomPyTypes CustomPyTypes

TFunctionHolder CPPFunction

TMemoryRegulator MemoryRegulator

TMethodHolder CPPMethod

TSetItemHolder CPPSetItem

TTupleOfInstances TupleOfInstances

Other Changes (PyROOT-Cppyy)

▶ New
● DeclareConverters, DeclareExecutors, LowLevelViews, PyObjectDir27,

TypeManip

▶ Deleted
● TPyBufferFactory, TPyDispatcher, TPyFitFunction, TPyROOTApplication,

TPySelector

▶ Modified
● Converters, Cppyy, Executors, PyCallable, PyStrings, Pythonize,

TemplateProxy, TPyArg, TPyClassGenerator, TPyException, TPyReturn,
TPython, Utility

14

