
Connecting ROOT to the Python world
with Numpy arrays

2018-03-08

1



What is the idea?

I Numpy arrays are the interface for all of the scientific libraries
in the Python world (scipy, sklearn, tensorflow, matplotlib, . . . ).

I The desired interface would look like this:

>>> import ROOT
>>> import numpy as np
>>> x = ROOT.TSomeObjectWithContiguousData()
>>> y = np.asarray(x) # <- Zero-copy operation!
>>> print(y.shape)
(num_dim_1, num_dim_2, ...)

There are two solutions to make this possible →

2



Reminder: Memory-layout of Numpy arrays

Documentation: Link

An instance of class ndarray consists of a contiguous
one-dimensional segment of computer memory (owned by
the array, or by some other object), combined with an
indexing scheme that maps N integers into the location of
an item in the block. The ranges in which the indices can
vary is specified by the shape of the array.

3

https://docs.scipy.org/doc/numpy-1.13.0/reference/arrays.ndarray.html


Short-term solution: The (Numpy) array interface

I Adding the __array_interface__ magic to ROOT Python
objects (Documentation)

...
>>> x = ROOT.TSomeObjectWithContiguousData()
>>> print(x.__array_interface__) # This is a dictionary!
{

"version": 3, # Version of the array interface
"shape" : (100, 4), # Shape information
"typestr" : "<f4", # 4-byte float, little endian
"data" : [12345678, False], # Pointer to first element, read-only flag
... # There are more optional fields to support C-style structs, offsets, masks, strides, ...

}
>>> y = np.asarray(x) # Zero-copy operation, adopts the memory
>>> print(y.shape)
(100, 4)

I This can happen in the Pythonization-layer of PyROOT.
I Fast and cheap solution.

4

https://docs.scipy.org/doc/numpy-1.13.0/reference/arrays.interface.html


Long-term solution: The buffer protocol
Description found here:

Certain objects available in Python wrap access to an underlying memory array or buffer. Such
objects include the built-in bytes and bytearray, and some extension types like array.array.
Third-party libraries may define their own types for special purposes, such as image processing or
numeric analysis.

Basic structure, defined in the module source:
typedef struct bufferinfo {

void *buf;
PyObject *obj;
Py_ssize_t len;
Py_ssize_t itemsize;
int readonly;
int ndim;
char *format;
Py_ssize_t *shape;
Py_ssize_t *strides;
Py_ssize_t *suboffsets;
void *internal;

} Py_buffer;

int PyObject_GetBuffer(PyObject *obj, Py_buffer *view, int flags);

Numpy (and others) understand the buffer protocol:
...
>>> x = ROOT.TSomeObjectWithContiguousData() # Python object implements the buffer protocol
>>> y = np.asarray(x) # Zero-copy operation
>>> print(y.shape)
(num_dim_1, num_dim_2, ...)

5

https://docs.python.org/3/c-api/buffer.html

