

#### Status of the Hollow Electron Lens ebeam

Adriana Rossi, Sergey Sadovich (CERN BE-BI-EA)

With contributions by D. Perini (CERN), G. Stancari (FNAL), A. Barnyakov, A. Levichev, M. Maltseva, D. Nikiforov (BINP)



BGC Collaboration Meeting at GSI - 19 March 2018

#### Outline

### Context

- Brief description of electron lenses and electron beam dynamics
- 2 phases test facility at CERN
- Summary and outlook



#### **Context: hollow electron lens**

 Halo diffusion enhancement: Loss spikes have already affected the operation of the LHC, and control of beam losses is recognised as a critical concern for performance at HL-LHC due to the higher beam energies and intensities (for ex. for Crab Cavity failure).

$$\theta_r = \frac{2 I_r L \left(1 \pm \beta_e \beta_p\right)}{r \beta_e \beta_p c^2 (B\rho)_p} \left(\frac{1}{4\pi\epsilon_0}\right)$$

- Hollow electron lenses are being designed and (if approved as baseline) will be installed in IR4 (during LS3) as active mean to increase diffusion rate of halo particles. Halo
  - at HL-LHC required hollow electron beam
    - $\sim$  15Am (3m e-lens per beam) 5A  $\times$  15kV
  - e-beamØ 1.9-3.8mm at LHC top energy (7TeV)
    Ø 7.6-15.2mm at LHC injection energy (7TeV)





#### Outline

#### Context

- Brief description of electron lenses and electron beam dynamics
- 2 phases test facility at CERN
- Summary and outlook



#### **Reference Design of HEL for the Review in Oct. 2017**



#### After review: Reference Design of HEL with central gap



#### **Existing electron lenses and HEL@HL-LHC**

#### Tevatron, FERMILAB

Table 1. Electron Long and Toyotron collider commeter

| Parameter                                 | Symbol                               | Value            | Unit                                              |  |
|-------------------------------------------|--------------------------------------|------------------|---------------------------------------------------|--|
| Electron energy                           | U <sub>e.</sub>                      | 5/10             | kV                                                |  |
| Peak electron current                     | $J_{e}$                              | 0.6/3            | А                                                 |  |
| Magnetic field in<br>main/gun solenoid    | B <sub>main</sub><br>B <sub>mm</sub> | 30<br>3          | kG                                                |  |
| Radii: cathode/e-beam in main solenoid    | a <sub>c</sub><br>a <sub>c</sub>     | 7.5              | mm                                                |  |
| e-pulse period/width,<br>"0-to-0"         | $T_0$<br>T                           | 21<br>≈0.6       | μs                                                |  |
| Interaction length                        | Le                                   | 2.0              | m                                                 |  |
| Tevatron                                  | Collider Pa                          | rameters         |                                                   |  |
| Circumference                             | C                                    | 6.28             | km                                                |  |
| Proton/antiproton<br>beam energy          | E                                    | 980              | GeV                                               |  |
| Proton bunch intensity                    | $N_n$                                | 250              | 109                                               |  |
| Antiproton bunch<br>intensity             | Na                                   | 50-100           | 10 <sup>9</sup>                                   |  |
| Emittance proton,                         | $\mathcal{E}_{D}$                    | ≈2.8             | μm                                                |  |
| antiprot. (norm., rms)                    | Ea                                   | ≈1.4             |                                                   |  |
| Number of bunches,                        | $N_B$                                | 36               | ns                                                |  |
| bunch spacing                             | $T_b$                                | 396              |                                                   |  |
| Initial luminosity                        | $L_0$                                | 1.5-2.9          | 10 <sup>32</sup> cm <sup>-2</sup> s <sup>-1</sup> |  |
| Beta functions, TEL2                      | $\beta_y / \beta_x$                  | 150/68           | m                                                 |  |
| Beta functions, TEL1                      | $\beta_y/\beta_x$                    | 29/104           | m                                                 |  |
| Proton/antiproton                         | ξP                                   | ≈ <b>0.008</b>   | max., per                                         |  |
| head-on tuneshift                         | ξa                                   | ≈0.011           | IP                                                |  |
| Proton/antiproton<br>long-range tuneshift | $\Delta Q^p$<br>$\Delta Q^a$         | ≈0.003<br>≈0.006 | max.                                              |  |
|                                           |                                      |                  |                                                   |  |

V. Kamerdzhiev, Progress with Tevatron electron lenses, Proceedings of COOL 2007, Bad Kreuznach, Germany

#### RHIC, BNL

TABLE I. The parameters for the RHIC electron lenses.

| Parameter                                   | Unit    | Value   | Value     |
|---------------------------------------------|---------|---------|-----------|
| Proton beam parameters                      |         | Design  | 2015      |
|                                             |         |         | operated  |
| Total proton energy $E_p$                   | GeV     | 250     | 100       |
| Relativistic factor $\gamma_p$              |         | 266.4   | 106.8     |
| Bunch intensity $N_{\rm p}$                 | 1011    | 3.0     | 2.25      |
| $\beta^*_{x,y}$ at IP6, IP8 (p-p)           | m       | 0.5     | 0.85      |
| $\beta^*_{x,y}$ at IP10 (p-e)               | m       | 10.0    | 15.0      |
| Lattice tunes $(Q_x, Q_y)$                  |         | (0.695, | (0.695,   |
|                                             |         | 0.685)  | 0.685)    |
| Phase advance (IP8-IP10)                    | Degree  | 180     | 180       |
| rms emittance $\varepsilon_n$ , initial     | mm mrad | 2.5     | 2.8       |
| rms beam size at IP6, IP8, $\sigma_{n}^{*}$ | μm      | 70      | 150       |
| rms beam size at IP10, $\sigma_{p}^{*}$     | μm      | 310     | 630       |
| rms bunch length $\sigma_s$                 | m       | 0.50    | 0.70      |
| Beam-beam parameter $\xi$ /IP               |         | 0.0147  | 0.0097    |
| Number of beam-beam IPs                     |         | 2 + 1   | 2 + 1     |
| Electron lens parameters                    |         |         |           |
| Distance of center from IP                  | m       | 15      | 15        |
| Effective length $L_c$                      | m       | 2.1     | 2.1       |
| Kinetic energy $E_{e}$                      | kV      | 5       | 5         |
| Relativistic factor $p_e$                   |         | 0.14    | 0.14      |
| Polativistic factor y                       |         | 1.0002  | 1.0002    |
| Current I <sub>e</sub>                      | А       | 1.0     | 0.43/0.60 |
| Electron beam size at                       | $\mu$ m | 350     | 650       |
| interaction                                 |         |         |           |
| Linear tune shift                           |         | 0.0147  | 0.01      |

X. Gu, Electron lenses for head-on beam-beam compensation in RHIC, Physical review accelerators and beams 20, 023501 (2017)

#### HEL HL-LHC CERN

HEL Parameters

Current(3A at 12 kV) 5A at 15 kVEffective length2.9 m

#### Hollow shaped beam with

- higher current (5A),
- higher current density (~57A/cm<sup>2</sup> for 1.8-3.6mm hollow beam for protons at 7TeV)
- higher energy (15kV),
- longer effective length (2.9m)



#### **Electron beams**

- An electron in a uniform B field will gyrate along beam lines with
  - cyclotron frequency

$$W_c = \frac{|qB|}{m}$$

gyroradius

$$r_g = \frac{v_{\text{A}}}{W_c} = \frac{mv_{\text{A}}}{qB}$$

• In the presence of an electric field (self field of e-beam), assuming that the induced B field change is  $<< W_c^{-1}$ 

$$\frac{d\mathbf{r}_{\text{guiding centre}}}{dt} = \mathbf{v}_{\parallel} \frac{\mathbf{B}}{|\mathbf{B}|} + \frac{\mathbf{E}_{\perp} \times \mathbf{B}}{B^2}$$



## **Electron beam in electron lens**



# **Origin of the diocotron instability**



- Different angular velocities for different radii provide relative motion of layers. It may lead to the density equilibrium violation and cluster origin
- Angular velocity for the given radius r (E X B)







# Estimation of potential sagging in chosen modes







Barnyakov, A. Levichev, <u>M. Maltseva,</u> D. Nikiforov BINP-CERN

## **E-lens magnetic system**



#### 3 A and 12 kV: trajectories in the main solenoid

#### Gap between solenoids

Here we can see the beam rotation in the crossed electric and magnetic fields



## **3 A and 12 kV:** cross sections in the main solenoid





#### **5 A and 15 kV:** cross sections in the main solenoid



# **LARP** Profile evolution





#### **Preliminary CST simulation of FNAL measurements**

3A with 0.2-0.4-0.2T Real (measured) cathode emission



https://cdcvs.fnal.gov/redmine/projects/elens/wiki/Test\_Stand







#### Outline

#### Context

- Brief description of electron lenses and electron beam dynamics
- 2 phases test facility at CERN
- Summary and outlook



# Phase 1: description and purpose

- Commissioning hardware (magnets, vacuum,
  - HV system, control, etc.)
- Safety and technical aspects of operation
- Define diagnostic procedures
- Electron gun characterization current in temperature and space charge (anode voltage) limited emission
- Anode modular
- Beam Gas Curtain monitor



- Gun and collector solenoids
- Diagnostic box
  - pin-hole Faraday cup with bias V [electron density distribution and energy]
  - YAG screen monitor
- 40 kV power converters



## Phase 2: description and purpose

#### Addition of drift solenoid like at FNAL and RHIC



- Drift solenoid warm (recuperated) could achieve 0.4-0.5T over 1.2m.
- Need upgrading heat exchanger and power grid in the building
- Dry SC drift solenoid (4T) may be cheaper and would expand range of investigation
- Validate BPM 'shoe-box' or 'strip-line' (with HEL or HF modulation) for electrons
- Test (improve) the modulators and check effects on electron position measurements as well as on electron beam dynamics
- Bench-mark our simulations and gain confidence on projection
- Design and test clearing electrodes for electrons created at the BGC
- Test BGC resolution and energy/density resolving



### Phase 2 upgrade: description and purpose



- Measure effect of B x gradB on deformation of beam with high current density
- Computer model validation
- Fine tune parameters like the geometry of the vacuum chamber at injection of the electron beam (for example to avoid that the beam touches the chamber or deforms)



## **Summary and outlook**

- A test stand at CERN is being constructed in a phased approached.
- Phase 1 it will be/ can be used to:
  - E-gun characterisation (in parallel or after FNAL).
  - Test and commission BGC [see ref.]
- Phase 2 needed to:
  - Test RF modulation.
  - Test BPM for electrons (HF or LF modulation).
  - Investigate electron beam dynamics and benchmark simulation codes like CST, WARP, UltraSAM, ...
  - Test BGC resolution



## **Tests for SIS18 space charge compensation**

- Space charge compensation : electric field generated by electron beams (<u>Gabor lenses</u>) used to focus ion/proton beams, whose space charge would otherwise cause emittance blow-up.
  - Electron beam with transverse and longitudinal distribution plus current intensity ~ matching beam to be focused
  - 10 A average 20 A peak current, 50x70 mm size, 25kV for GSI studies





#### Thank you for your attention

References for Beam Gas Curtain (or Jet) monitor:

- H. Zhang et al, DEVELOPMENT OF A SUPERSONIC GAS JET BEAM PROFILE MONITOR, IBIC2015
- V. Tzoganis et al, EXPERIMENTAL RESULTS OF A GAS JET BASED BEAM PROFILE MONITOR, IPAC14
- V. Tzoganis et al, Design and first operation of a supersonic gas jet based beam profile monitor, <u>Phys. Rev. Accel. Beams 20, 062801</u>, 12 June 2017





#### **Spare slides**



A. Rossi, Mini-workshop on Beam-Beam Effects in Circular Colliders, 5-7 February 2018, LBL Berkeley CA

### **Electron Lens schematics (currently proposed)**



#### **E-lenses test stands in the world: overview**

#### FERMILAB - Tevatron





https://cdcvs.fnal.gov/redmine/projects/elens/wiki/Test\_Stand

Operational, up to 10 kV,  $8\mu s \times 1Hz$  pulses Used to test CERN guns, will be used for testing guns for space-charge compensation at IOTA ring. Could be used to test HF modulators.







W. Fischer, et al. Construction progress of the RHIC electron lenses. IPAC 2012 - International Particle Accelerator Conference 2012. 2125-2127.

RHIC e-lenses test stand was converted to e-lenses at accelerator



Not all aspects important for HEL@HL-LHC can be tested Available time for tests is very limited

#### **Hollow Electron Lens**



#### 25-mm (1-in) Fermilab prototype for LHC (HG1)

![](_page_28_Picture_1.jpeg)

**‡**Fermilab

![](_page_28_Picture_2.jpeg)

HG1: original design HG1b: added cathode shield HG1c: replaced cathode

![](_page_28_Picture_4.jpeg)

![](_page_28_Picture_5.jpeg)

Giulio Stancari I Characterization of the CERN hollow electron gun at FNAL

Napa CA I LARP-HiLumi I 24 Apr 2017

![](_page_29_Figure_0.jpeg)

#### Preliminary electron studies Effect of vacuum chamber geometry

![](_page_30_Picture_1.jpeg)

![](_page_30_Figure_2.jpeg)

Transverse electron profile for a 20A - 35 kV source (~1cm<sup>2</sup>). The radial energy distribution and transverse dimensions are shown for 2 different pipe geometries.

Note: statistics/meshing probably too low/large to see full dynamics.

![](_page_30_Picture_5.jpeg)

![](_page_30_Picture_6.jpeg)