

Wrocław University of Science and Technology

HP side CFD simulations

Przemysław Smakulski

BGC Collaboration Meeting Hotel Krone, Hirschberg 2018-03-19

Agenda

- Work done so far a brief summary
- What we have learned from the CFD simulaitons
 - Nozzle parameters dependences
 - Gas temperature after expansion
 - Impact of the first skimmer
- Nozzle optimization
- Further development of the simulaitons

Abbrevaitions used in the presentation:

- Simple Geometry nozzle -> SG
- de Laval nozzle -> DL

Work done so far in CFD

- Formation of the gas jet for SG in time without the skimmer
- Comparison between SG and DL without the skimmer
- Simulations with the 1st skimmer for SG and DL
- Comparison between different boundary conditions for DL

Some statistics:

- Solved over 79 different simulations, from which approx. 80% were used as an initial value for single case: One case consist of 3 to 5 initial value simulations
- Time for single simulation ~ 6h
- Processor core used: from 8 to 16 per one simulation
- RMS error target 10⁻⁷

Forming of a jet – first $1 \cdot 10^{-5}$ s

Jet formation into high vaccum needs less than 1e-5 s to fully developed a stable stream

Density Profile – comparison of the nozzle design

Contour 1 [kg m^-3] [kg m^-3] Contour ⁻ De Laval 0.03 (m 0.03 (m nozzle throat 30 μ m

Simple Geometry

Taking into consideration the same boundary conditions, the de Laval (convergent-divergent) nozzle shows higher density profile, which is around 2 times higher in comparison to simple geometry nozzle.

Influence of the distance to the throat cross-section

Free parameters, high pressure part

Gas temperature after expansion

SG Tin = 20°C Pin = 10 bar Pout = 1.0 mbar

DL Tin = 20°C Pin = 3 bar Pout = 0 Pa

Gas temperature and pressure after expansion

- After expansion of a gas is possible to reach the cryogenic temperature of the medium
- It could be dangerous in order to:
 - reach a liquid or sold state at the end of expansion
 - simulation results obtained for a single phase medium will be wrong

	T _{liquid} @ 1bar	T@triple-point	p@triple-point
Nitrogen	77.35 K	63.15 K	12.50 kPa
Argon	87.30 K	83.81 K	68.89 kPa
Neon	27.10 К	24.56 K	43.37 kPa

SG

Gas: Nitrogen

Nozzle throat 30µm

Nozzle optimization Comparison criteria

• For the comparison of the both nozzle constructions was chosen the distance between critical nozzle diameter and 1st skimmer inlet

Modification of the nozzle shape – divergent part of the nozzle

THE OD WANTED

Gas: Nitrogen

Inlet pressure

Nozzle optimization

- By extending the numerical simulation procedure it is possible to obtain an optimal solution for given requirements
- To perform the next step of the simulation, the boundary conditions need to be set up (minimal/maximal density level at skimmer inlet or velocity value)

Distance to the

skimmer

Nozzle type

Next steps

- Influence of the Skimmer wall thickness on overall nozzle performance.
- Shape modification in order to increase the density of the gas at the Skimmer inlet.
- Simulations for different gas mediums (Argon, Neon...)
- Optimization of major dimensions in order to get high speed, uniform, dense gas jet at the Skimmer together with reduction of mass stream at the nozzle outlet
- Reduction of the mass stream to meet the requirements of the project -> pulsating gas stream formation ?

Concluions

- Numerical simulations for HP side show that higher densities and velocities at the first skimmer inlet are possible to obtain by convergent-divergent, de Laval nozzle
- Optimization of the high pressure side could be performed in various options in case of using DL
- Parameters at a nozzle have to be controlled in order to avoid liquefaction or solidification of the jet medium

Wrocław University of Science and Technology

Thank you for your attention

Still to consider in HP side ...

3/19/2018

Entropy (kJ/kg-K) Przemysław Smakulski