

Optical Beam Diagnostics

Introduction and Status Report for the Year 2017

R.Hampf¹, A. Himpsl¹, R.Mühling² A. Ulrich¹, <u>J. Wieser²</u>

¹Physik-Department E12/E15, Technische Universität München, James Franck Str.1, 85748 Garching, Germany ²Excitech GmbH, Branterei 33, 26419 Schortens, Germany

Layout

- Introduction/Motivation
 - "History" nuclear/heavy ion beam pumping
 - Excitech GmbH
- Experimental setup
- Experimental results
 - Spectroscopy
 - Beam profile measurements

Introduction/Motivation

"Our history": heavy ion beam pumping

Heavy ion beam pumped visible laser

A. Ulrich, J. Wieser, A. Brunnhuber, and W. Krötz Appl. Phys. Lett. **64**, 1902 (1994)

excitech

Beam: 42µA, ³⁵Cl, 120MeV (3e13/s, 500W_{inst}) 2...50µs, 50Hz

Target: He-Ne-Ar, 800mb, 92:6:2

Generally: non-thermal excitation of high-pressure targets

3

Introduction/Motivation

- Heavy ion beam pumping:
- Gas kinetic studies
- Laser
- VUV Light Sources E-Lux

excitech

excitech: Electron Beam Excited Light Sources "E-Lux"

"Our" traditional setup: 12keV Electron beam excitation

The Technology:

The key for the technology lies in the entrance foil for the electrons: Here only 300 nm "thick" ceramic membranes !

19.03.2018

BGC Collaboration Meeting Heidelberg 2018

6

Transmittierte Elektronenenergie

19.03.2018

VUV Light Sources E-Lux

intensity [rel. units]

Gaskinetic Studies/VUV Spectroscopy

Time-resolved measurements

Ne, 1bar

5ns excitation

Photon-counting

A.Morozov, R.Krücken, A.Ulrich, J.Wieser, T.McCarthy, Energytransfer processes in neon-hydrogen mixtures excited by electron beams, J.Chem. Phys. **123**, 234311 (2005)

Gaskinetic studies/Spectroscopy

A.Morozov, R.Krücken, A.Ulrich, J.Wieser, T.McCarthy, Energytransfer processes in neonhydrogen mixtures excited by electron beams, J.Chem. Phys. **123**, 234311 (2005)

excitech

19.03.2018

BGC Collaboration Meeting Heidelberg 2018

10

Introduction/Motivation NOW: optical beam profile determination:

Question:

"Ion beam" or "secondary electrons"

Ne, 585nm filter, 3mbar, 1mm aperture excitech

Ion beams from the Munich Tandem Accelerator

dc beams, ~100MeV 32 S ions

Target cell

Titanium entrance foils

Differential pumping 1mm diameter

Gas purification

Quartz window

MgF₂ window

Spectrosopic setup (110nm to 3.5µm)

19.03.2018

Preliminary beam profile monitor:

apocromatic lens 300 to 1100nm, ATIK CCD camera (Si), set of filters

Gas system

19.03.2018

Spectroscopic results

Overview: Light emission from pure rare gases

19.03.2018

BGC Collaboration Meeting Heidelberg 2018 21

BGC Collaboration Meeting Heidelberg 2018 24

BGC Collaboration Meeting Heidelberg 2018 26

Filter for the beam profile monitor

Selection of ion lines and Lines emitted from neutral atoms (molecules)

"Filters from Stock!"

19.03.2018

BGC Collaboration Meeting Heidelberg 2018 28

BGC Collaboration Meeting Heidelberg 2018 29

BGC Collaboration Meeting Heidelberg 2018 30

BGC Collaboration Meeting Heidelberg 2018 31

Beam profiles

19.03.2018

BGC Collaboration Meeting Heidelberg 2018 34

BGC Collaboration Meeting Heidelberg 2018 35

BGC Collaboration Meeting Heidelberg 2018 36

BGC Collaboration Meeting Heidelberg 2018 37

BGC Collaboration Meeting Heidelberg 2018 38

Preliminary interpretations

Strongest lines ! Normalized to 200µm slit width, 1nA beam, 1sec integration

19.03.2018

excitech

The track of an ion beam in a gas target

19.03.2018

Dissertation: Sabine Roth TUM 2013

19.03.2018

The track structure of the ions appears when the range of the secondary electrons is larger than the beam diameter!

Secondary electrons: 66% of the energy within **7mm range** @ 1mbar Ar, room temperature.

19.03.2018

Profile vs. Pressure atomic line

BGC Collaboration Meeting Heidelberg 2018 47

Information from spectra and their pressure dependence

Excited states

- **Excitation cross sections**
- Collisional quenching

Recombination processes

(Emission from recoiling species – Doppler effect)

Information from beam profiles

Spatial resolution

Range of secondary electrons

Angular scattering

(lon range)

Outlook

Interprete the profiles based on ion track studies

Mesurements using other projectiles (protons, e-beam)

High resolution (1pm) spectroscopy (velocity of radiating species)

Beam profile monitor with amplifier and sensitivity in the VUV

Experiments at GSI/FAIR

Extract information about coll. processes from spectra

Thank you for your attention !

19.03.2018