

Status of the Fluorescence Profile Monitor for the CERN e-Lens

S. Udrea, P. Forck

GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany

≻Optics

- Image intensifier and camera
- > Optomechanics
- ➤Test setup and first results at the Cockcroft Institute
- Conclusions and outlook

Optics: present requirements

- Good transmission in the near UV, at least in the region 300 to 400 nm
- Good resolution, well corrected geometrical and chromatic aberrations
- A magnification of about 1 (absolute value) due to the relatively low resolution of the double MCP stack of at most 20 lp/mm
- Relatively large working distance to allow the placement of the detector system at d > 400 mm from the beam axis
- Large acceptance, a solid angle of about $4\pi \cdot 10^{-4}$ sr desirable
- Total depth of field (DOF) up to 15 mm with reasonable blur; can be relaxed if an appropriate setup geometry is used: camera looking perpendicular to the curtain plane or application of the Scheimpflug principle

Optics: commercially available lens (part 1)

E-Lens Collab. Meeting, June 27th, 2017

Image intensifier working principle

E-Lens Collab. Meeting, June 27th, 2017

The ProxiKit PKS 2581 TZ-V 25 µs

Features:

- UV enhanced S20 photo-cathode
- P43 phosphor screen
- − TTL gate: 25 µs to ∞ , f_{max} = 1 kHz

Flexible, user serviceable relay optics based on a Schneider Componon 12 lens offering many image ratios, e.g. 18:11 & 25:11

 Any camera with C-mount mechanics or adaptable to it can be used, as long as the detector is sensitive in the visible wavelength range as emitted by the P43

BIF Profile Monitor

UV enhanced S20 spectral response

E-Lens Collab. Meeting, June 27th, 2017

The acA1920-40gm CMOS camera

Seller/ Manufacturer	Sensor	Resolution	Video Output	Exposure time	Trigger	I/O	Power (lowest voltage)
Rauscher/ Basler	Sony 1/1.2" IMX249, CMOS, 5,86x5,86 µm², Global Shutter	1920x1200	Mono 8bit, 12bit, 12bit packed	34 µs @ 8bit/ 40 µs @ 12bit - 10 s or trigger width	<i>Hardware Trigger:</i> Pulse-Edge, Pulse- Width <i>Trigger Modes:</i> Trigger Width, Sequence	1x ISO IN 1x ISO OUT 1x GP IN/OUT	PoE (36V)/ 12V DC via 6- Pin Hirose

G 53 Å

Optomechanics

Test image (central part)

Results:

- Resolution up to 20 lp/mm
- Magnification @ MCP:
 1.2 ± 0.1

Note: The DOF has been estimated to be 4.5 ± 0.5 mm

New BIF Monitor on present Gas Jet Setup at Cockcroft

Measurements with N₂ and Ne as residual gases

Pressure: $1.4 \cdot 10^{-7}$ mbar e-beam: 7 keV, $\approx 30 \ \mu$ A, focused to $\approx 1 \ mm$ Integration time: 160 s Filter @390 nm, 10 nm FWHM Emitter: N₂⁺ @ 391.4 nm Scale: 45 pixels/mm

Pressure: $4 \cdot 10^{-5}$ mbar e-beam: 7 keV, $\approx 30 \mu$ A, focused to ≈ 1 mm Integration time: 400 s Filter 550-600 nm, flat top Emitter: Ne @ 585.4 nm

1D Histograms after Integration along Beam Axis

Width: FWHM = 0.42 mm Signal strength:

N_γ measured: 2500 N_γ estimate: 2000 **Within expected uncertainties! Signal-background ratio:** As expected! (pressure is main error)

Width: FWHM = 0.75 mm Signal strength: N_{γ} measured: 40000 N_{γ} estimate: 12700 Within expected uncertainties! Signal-background ratio: As expected! (pressure is main error)

Fit of peak: Voigt profile Background: 4th oder polynomial Remark: Voigt profile is a convolution of a Gaussian and a Lorentz-curve

E-Lens Collab. Meeting, June 27th, 2017

BIF Profile Monitor

F 5 1

Measurement with N, Gas Jet Curtain

Parameters: electron energy: 5 keV, beam current: \approx 30 µA, pressure: \approx 6·10⁻⁸ mbar, integration time: 4000 s

Overlap between electron beam and gas jet curtain detected!

Adjustment target and scintillator

Scintillator: CRY-18 by **CRYTUR** with strong emission around 400 nm **Remark:** Proved to be extremely fragile!

BIF Profile Monitor

The adjustment target and scintillator assembly mounted on the new gas jet setup and shown through the BIF viewport (Photo: H. Zhang)

stripes

deposited

substrate.

on Al_2O_3

LED add-on

The LED add-on still at GSI together with the OSRAM LE-UW-U1A3-01 LED. Electronics for driving the LED not yet ready due to missing manpower.

Interaction chamber blackening

According to the experience at GSI interaction chamber blackening is a must because of the low signal level.

At GSI we had good experience with the company INOX-COLOR.

No dies are involved! They realize a very thin and transparent chromium oxide layer at the surface. This can withstand temperatures up to 200°C for long times and higher ones (up to approx. 300°C) for short times. It is not very resistant against abrasion, but it can sustain mechanical deformation of the substrate, e.g. bending. The final effect (blackening) is obtained due to interference.

Remark: If necessary one can additionally use some graphite spray for certain regions of reduced size.

Making the BIF setup LHC compatible

- Is a radiation shield necessary?
 - particles with long interaction paths within the MCP (i.e. moving almost parallel to the photocathode's surface) may lead to useless images,
 - lens materials may lose their transparency,
 - other camera types (e.g. emCCD) may be more sensitive to radiation.
- Is a magnetic shield necessary?
- Another camera type for increased detection efficiency at long wavelengths (e.g. of the Ne 584.5 nm line)?
- Modify geometry to allow for a short depth of field and thus increase acceptance of the lens?
- Optimize the lens? The present lens allows for measurements within a broad spectral range and relatively high magnifications. However, depending on the final spectral range of interest and the size and resolution of the future detector, a more appropriate lens may be chosen.

emCCD cameras as a possible alternative to MCP

Principle of electron multiplication CCD:

Multiplication by avalanche diodes:

Parameters of an iXon Ultra 897 (16bit)

- Pixel: 512x512, size 16x16 µm², -100 °C
- Maximum amplification: x1000
- Readout noise: < 1 e⁻ per pixel

Remarks: Higher noise due to amplification mechanism, more expensive, if damaged has to be completely replaced, radiation hardness unknown.

BIF Profile Monitor

emCCD cameras as a possible alternative to MCP

Principle of electron multiplication CCD:

Multiplication by avalanche diodes:

Parameters of an iXon Ultra 897 (16bit)

- Pixel: 512x512, size 16x16 µm², -100 °C
- Maximum amplification: x1000
- Readout noise: < 1 e⁻ per pixel

Remarks: Higher noise due to amplification mechanism, more expensive, if damaged has to be completely replaced, radiation hardness unknown.

BIF Profile Monitor

Conclusions and outlook

- The new MCP based BIF setup has been realized, successfully tested offline and commissioned at the existing gas jet curtain setup
- A new adjustment target has been manufactured and installed on the future gas jet curtain setup at Cockcroft, there are issues with the scintillators which are much more fragile than expected
- LED and mechanical add-on for adjustment target illumination are available, electronics for driving the LED still under development
- Mechanical BIF setup support manufacturing ongoing
- Detailed comparison between Neon, Nitrogen and Argon still pending, should be performed after the installation of the new electron gun at Cockcroft
- Quasi-simultaneous measurement of electron beam current and profile at Cockcroft

