Discussion questions

- Selection of working gas
 - Baseline the Ne 585 line?
- Experimental programme priorities
- Simulations priorities

Serban – photon acquisition times

Projectile	Emitter	λ [nm]	σ [cm²]	I [A]	$\eta_{\sf pc}$	$N_{\gamma}[s^{-1}]$	1/N _y [s]
electron	N_2	337.1	1.5.10-23	5	0.2	1.2	0.8
electron	N_2^+	391.4	9.1.10-19	5	0.2	7.5.104	1.3·10-5
proton	N_2^+	391.4	3.7·10 ⁻²⁰	1	0.2	6.1·10 ²	1.6·10-3
electron	Ne	585.4	1.4.10-20	5	0.05	2.9·10 ²	3.5·10-3
proton	Ne	585.4	4.7·10-22	1	0.05	1.9	0.5
electron	Ar	750.4	2.8·10 ⁻¹⁹	5	0.01	1.2·10 ³	8.4.10-4
electron	Ar+	476.5	1.2.10-20	5	0.2	9.9·10 ²	1.0.10-3

Remark: The Ar⁺ cross section can be significantly increased by integrating over $400 < \lambda < 500$ nm

Plans for 2018

- Install new gun in the old setup to further decrease the integration time (in seconds or less)
- Scanning gauge working in continuous jet mode
- Finish commissioning of the second gas jet setup
 - Nozzle and skimmers alignment
 - Chamber blackening
 - Pumping test
 - Bake-out
- Experiment tasks for the second gas jet
 - Jet image of e-beam, integration time and resolution
 - Different gas species, Nitrogen, Neon, Argon
 - Nozzle sizes (20um, 30um, 50um) and shape (regular or naval nozzle)
 - Jet density measurement

Experiments

Cockcroft

- Check the extrapolations of the cross-sections with the new electron gun.
- Hao Peter suggests adding-up a number of pixels to produce an image that should significantly smooth the image.
- Hao which nozzle, how to align based on available equipment
- Hao remake the tests that allow us to calibrate the jet vs residual gas pressure
- Hao we agree that we make a fixed FC as a dump for the e-gun on the 2nd set-up?
- Can we add a 4th 'exhaust skimmer' on the set-up
- Serban make a detailed comparison between Ne, N2 and Ar, with measurement of e-gun with a Faraday Cup to verify intensity
- Gerhard come back to test different blackening coatings.
- Marton look at then moving away the exhaust pump could we do this experimentally on the v2 setup as well??
- Serban we want to measure reflectivity of surface coatings that are UHV compatible.

Simulations

- Hao should we consider gas jet clusters?
- Przemek Carsten will find their publications on the their analysis of the gas nozzle
- Przemek understand the difference between a perfect gas model with no interaction between molecules and a viscous model from a FE
- Marton look at 4th skimmer on exhaust line.
- Marton look at tilting the exhaust pump
- Marton look at a gas mirror

Design

- Serban can we find a more suitable intensifier/camera with ~20%+ efficiency for Neon
- Gerhard Decide what details really need to be taken in October 2018. Timeline for decisions.

Interfaces

- Adriana Find information on magnetic fields from the SC magnet at the level of the camera
- Adriana 200 mm length between cryostats is just for the instrument -we should optimise this with Anttii, including bellows and fixed points.
- Gerhard We need to write down the operational scenarios so that we can feed back into the vacuum design
- General what are the parameters of the e-lens test stand that we need to test the BGC
- Serban Adriana can send the radiation map for the region of the e-lens.

General

Publications - how do we organise this? Prepare for peer-review journals