CSC FED Open Questions

Evaldas Juska Texas A&M University

Evaldas Juska (TAMU)

1. Overview

Main question -- which ATCA card, and how many?

Andrew brought up a very good idea yesterday

- On the APd1 card, the mezzanine connector could be utilized to connect to a custom mezzanine board with cheap FPGAs to bring in the slow 1.6Gb/s CSC links
- Turns out, this could reduce the total ATCA cards for CSC by a lot
 - Only 6 ATCA cards would be needed (100 link variant, preferably VU9P)
 - The mezzanine would have to have 60x 1.6Gb/s receivers
 - Could be done with 4 Artix7 FPGAs (~\$200-\$250 each)
 - Plus optical receivers e.g. 5x miniPODs (\$136 each)
 - Send data to the main FPGA over 120 I/Os @ 640Mb/s
 - Most likely the board would have to be larger than dedicated envelope, so would have to stick out and take up the second slot
 - This is not a problem since we only have 6 cards in the crate
 - See next slide for more details
- Question to Stephen: could this type of interface be included in BCP also?

2. Which ATCA card?

Which ATCA card? Best options (all RX channels occupied):

- o 6x APd1 with VU9P + custom mezzanine for outer chambers (\$193644)
 - Buffer space = 392Mb per card
- 9x BCPs with KU115 (\$179415)
 - Buffer space = 152Mb per card
- 9x BCPs with KU095 (\$165015)
 - Buffer space = 118Mb per card
- 6x BCPs with custom mezzanine

Is it ok to mix chambers from plus and minus endcaps?

- This is the case when using 9 BCPs
- Also could mix endcap in case of 6 APd1 to avoid station overlap
- Not a big deal from my experience never run half the system in global and other half in local

Is it ok to have some station overlap?

- This is the case when using 6 APd1 and not mixing endcaps
- Probably wouldn't have a big impact given the huge buffers

• In any case, should do queue depth simulation

Have a better idea of the buffer space requirements

3. APd1 with mezzanine for CSC FED

APd1 with VU9P and CSC Mezzanine (6 cards total)

- 90 out of 100 receivers used for high speed chamber links (new ODMB)
- 60 slow links from outer chambers would be taken in by the CSC Mez
- 8x 25Gb/s links used to interface with DTH (total = 200Gb/s)
- 340Mbit of buffer space, plus 52Mbits of buffers on the CSC Mezzanine
- With VU160 FPGA, buffer space = 115Mb, plus the mez buffers

Approximate total cost from \$183744 to \$193644

- 6x APd1 with VU9P: \$29774 * 6 = \$178644
- 6x APd1 with VU160: \$28124 * 6 = \$168744
- 6x CSC Mezzanines: around \$2500 * 6 = around \$15000

4. BCP option

9 BCP cards with KU095 or KU115

- 40 degrees of each chamber type from both endcaps per card
- Use 100 RX and 20 TX for chamber interfaces
- Use 12x 15.7Gb/s links for DTH interface (total = 188.4Gb/s)
- KU095 = 118Mb buffers, KU115 = 152Mb buffers
- Both FPGAs would have the same number of each chamber type
- Caveat: one card with chambers from plus and minus endcaps
 - Not a big deal since we never really run half of the system in local and the other half in global
- Total cost with KU095: \$18335 * 9 = \$165015 (removed 4 TX modules)
- Total cost with KU115: \$19935 * 9 = \$179415 (removed 4 TX modules)

5. Two way communication with ODMB

- Do we need two way communication with ODMB?
 - I would say absolutely yes for two reasons:
 - Backpressure to ODMB would extend buffer space by a lot
 - 13-16Mb per chamber (depending on FPGA) -- this is huge
 - Would be a shame to waste that
 - PROMIess programming of xDCFEBs and ALCT LX100

6. Bandwidth for ME4/2?

- Some ME4/2 chamber have significantly higher occupancy
 - More of an ODMB question, but closely related to FED too
 - Have to check carefully if we really don't need an ODMB there with a faster link to FED

7. Worst case scenario data rate

- Worst case scenario data rate = 1.38Tb/s
 - Not 0.6Tb/s as stated in TDR
 - From Manuel's presentation yesterday:

	$6.4~\mathrm{Gb/s}$ links			10 Gb/s links			10 Gb/s links		
	900 fibers			720 fibers			900 fibers		
	Rate	Link	Util.	Rate	Link	Util.	Rate	Link	Util.
Chamber	$[\mathrm{Gb/s}]$	$[\mathrm{Gb/s}]$	[%]	[Gb/s]	[Gb/s]	[%]	$[\mathrm{Gb/s}]$	$[\mathrm{Gb/s}]$	[%]
ME1/1	9.6	4×6.4	47	9.6	3×10	40	9.6	4×10	30
ME2/1	6.4	3×6.4	42	6.4	2×10	40	6.4	3×10	27
ME3/1	3.6	2×6.4	35	3.6	1×10	45	3.6	2×10	22
ME4/1	3.5	2×6.4	35	3.5	1×10	44	3.5	2×10	22
ME1/2	0.6	1×1.6	45	0.6	1×1.6	45	0.6	1×1.6	45
ME2/2	0.4	1×1.6	28	0.4	1×1.6	28	0.4	1×1.6	28
ME3/2	0.4	1×1.6	35	0.4	1×1.6	35	0.4	1×1.6	35
ME4/2	0.9	1×1.6	70	0.9	1×1.6	70	0.9	1×1.6	70
ME1/3	0.1	1×1.6	5	0.1	1×1.6	5	0.1	1×1.6	5

- If you add up the "Rate" column, you get 1.38Tb/s (!)
 - While TDR uses **0.6Tb/s** because 5x10^34 was used instead of 7.5x10^34

8. Worst case scenario data rate

This changes things a bit

6x APd1 + mezzanine is much better option in this case

6x APd1 (VU160 or VU9P) + mezzanine option

- Total system output capability to DTHs = 3Tb/s
- Total cost (including mezzanine production cost) = \$183744 \$193644
- Compatible with 1 or 2 DTHs
 - Fits into one crate even with 2 DTHs
- 167Mb 392Mb of buffer space per card

9x BCP without mezzanine option

- Total system output capability = 1.68Tb/s
- Total cost = \$169695 \$184095
- Adding bandwidth would mean adding 3 cards (additional cost = ~\$60k)
 - Otherwise cannot be balanced
 - This probably needs also additional crate
 - Total output bandwidth after adding 3 cards = up to **3Tb/s**
 - Total cost after adding 3 cards = \$226260 \$245460

Mezzanine card in general can help GEMs too

- Provide additional links for GE2/1 in GBTX scenario without BE increase
- Offload GE2/1 processing from the main FPGA, leaving resources to ME0