

ME0 Optohybrid

Andrew Peck 11 April 2018

ME0 Readout and Trigger Links

- 36 ME0 Modules (stack of 6 individual layers)
- Each layer has one optohybrid, 216 optohybrids total
 - Nominally, each has 1x LpGBT, 2x 8b10 trigger links per Optohybrid
- General similarity to GE1/1 Optohybrid, but a few changes:
 - GBTx → LpGBT (higher speed Serializer)
 - See Mike's slides for complexities of LpGBT
 - Removal of SCA (Slow Control Adapter)
 - Does not seem necessary
 - VTTX \rightarrow VL+ (new CERN optics)
 - +e.g. 3 TX + 1RX module
 - Virtex-6 \rightarrow Kintex-7
 - Needed for higher trigger bandwidth, more logic
 - Change of dimensions, pinouts, connectors, mounting etc
 - Radiation environment much harsher
 - Rates much higher

LpGBT Complexities

LpGBT design introduces complexities to control and configuration of VFAT

- Only 4 RX e-links @ 320 Mbps per LpGBT
 - + c.f. Mike's talk for more details: https://indico.cern.ch/event/712520/contributions/2944468/attachments/1621966/2581115/GE21_OH_03_23_2018.pdf
 - + c.f. LpGBT preliminary specs presentation: https://espace.cern.ch/GBT-Project/LpGBT/Specifications/LpGbtxSpecifications.pdf
- How to control 24 VFATs, provide EEPROMIess programming, and FPGA control on one LPGBT?
 - 1x e-link @ 320 Mbps fans out to all VFATs (need to use HDLC addressing)
 - VFAT has 8-bit address... need 5 for 24 VFATs => <u>OK</u>
 - Need to find a suitable way to fanout SLVS signals => <u>Find IC, or use FPGA</u>
 - 12x e-link @ 80 Mbps provide EEPROMless programming + misc
 - e.g. 8-bit data bus, 1 bit prog_b, 1 VFAT reset, 2x TTC
 - Need e-link for readback from Optohybrid. Two options:
 - 1) Operate GBTx in FEC5 (lower quality error correction scheme)
 - Provides 4 additional 320 Mbps uplinks, but lose some error correction
 - 2) Or drop the SCA and use 80 Mb/s EC port

LpGBT Complexities, part 2

Specs of LpGBT:

E-Links:

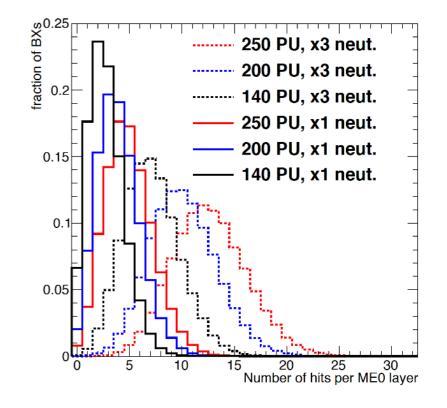
- Down-link:
 - Bandwidths: 80/160/320 Mb/s
 - Number of links^{*}: 16/8/4
 - "Mirror" function:
 - 80 Mb/s: no;
 - 160 Mb/s: each channel is available on 2 outputs;
 - 320 Mb/s: each channel is available on 4 outputs.
 - One EC channel @ 80 Mbit/s

"Mirror" function is added, allowing each e-link to drive 4 cloned outputs

- ♦ Need to fanout 4 x (1 → 6) instead of 1 → 24
- Might help.. might not.. but it is good to know about

SCA

- CERN GBT-SCA (SCA = Slow Control Adapter)
 - SCA provides JTAG
 - Do we really need JTAG? We have PROMIess programming & no EEPROM
 - LpGBT has programmable IO—can run JTAG on those
 - SCA provides ADC. Do we really need ADC?
 - The FPGA has analog inputs
 - LpGBT includes 10 bit ADC, 8 inputs
 - SCA is complicated, adds expense, space
 - SCA occupies the External Control (EC) channel (80 Mb/s SLVS tx/rx)
 - EC channel can be used for FPGA TX/RX path
 - Else we need to give up FEC12 error correction
- Choice: do we want FEC12, or do we want an FEC5 + SCA (lose SEU robustness)?
- Current plan: drop the SCA, use the EC channel for FPGA control



Reduced set SCA already built-in to LpGBT

FPGA Choice

- Optohybrid concentrator card compresses trigger bits by encoding "clusters"
 - Each cluster requires at least 14 bits (11 bits position, 3 bits size)
 - Current design (Virtex-6, 2 fibers) allows transmission of only 8 clusters per bx
 - 8 clusters give high overflow rates in ME0 => <u>Need faster or more links</u>
 - Adding enough links could be prohibitively expensive in backend card costs
 - Don't want to add additional cards just to accommodate old chip
 - TDR suggests using Virtex-6 + 2x LpGBT as trigger link serializers
 - Probably not possible due to number of IO required
 - Should be confirmed.. but it is a complicated solution in any case
 - Trigger compression is very logic intensive
 - Virtex-6 Logic is also small to handle the # of clusters
 - Probably won't work as designed

Very likely need to change FPGA...

Firmware Requirements

- Latency & logic requirements scale with # of clusters being found
 - Finding large numbers of clusters becomes very difficult
- ex. GE1/1: finding 8 clusters in 1536 S-bits
 - ~65% of Virtex 135T = ~87k logic cells
- ME0: finding 24 clusters globally in chamber
 - scaling to ~260k logic cells; necessitates e.g. Kintex 325t or larger
 - ► Logic will get REALLY complex \rightarrow <u>SEU issues abound</u>
 - Not trivial, not guaranteed to fit, especially not with full resolution
 - Should consider adding more trigger links to reduce compression ratio & simplify logic, reduce latency
 - + 4 links / ME0 layer makes the firmware much simpler by allowing the chamber to be partitioned

ME0 OH firmware <u>HAS</u> to be prototyped before committing to a design

Common Firmware

- With care, it seems like a common OH firmware could be used for GE1/1, GE2/1, and ME0
- If possible can this be planned to reduce redundant work ?
- Single owner probably easiest ?

Design Resolution

Full resolution in trigger: is this something we want/need?

- VFAT3 can support full resolution trigger data using DDR mode (640 Mbps)
- Planning of Optohybrid and GEB needs to be done carefully
 - + Higher deserialization ratio (16:1) and line rates require more care in clocking, routing
 - OH Logic requirements are increased (~doubled)
 - Backend logic requirements are increased (~doubled)
 - Cluster format changes (15 bits / cluster)
 - 3.2 Gbps links can now only encode 3 clusters, 6.4 Gbps and 9.6 Gbps do not change
 - GEB design is significantly more challenging w/ 640 Mbps signals
- For FPGA logic:
 - Prefer splitting chamber into fourths; 768 S-bits each, 12 clusters per quadrant per bx
- This needs to be decided and planned for

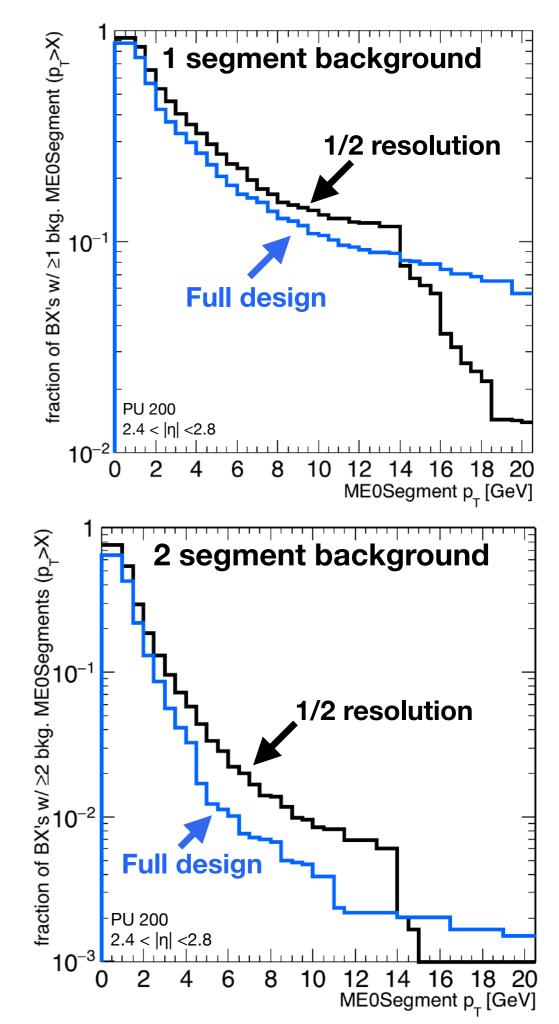
ME0 Trigger: Full Design vs 1/2 Resolution

Max *p*_T ID: 30 GeV vs 15 GeV

More flexibility in L1 menu and HLT track seeding

~1/2 L1 trigger rates

Better p_T resolution + ID: lower single and double muon rates


Online neutron bkg. rejection

Neutron induced hits \rightarrow wide clusters that can be cleaned on backend board

1/2 resolution: \leq 4 strip clusters must enter segment reconstruction

ME0 is designed for L1: Need full design for maximum versatility @ HL-LHC

(this slide=Nick McColl)

FPGA Choice

my increasing preference

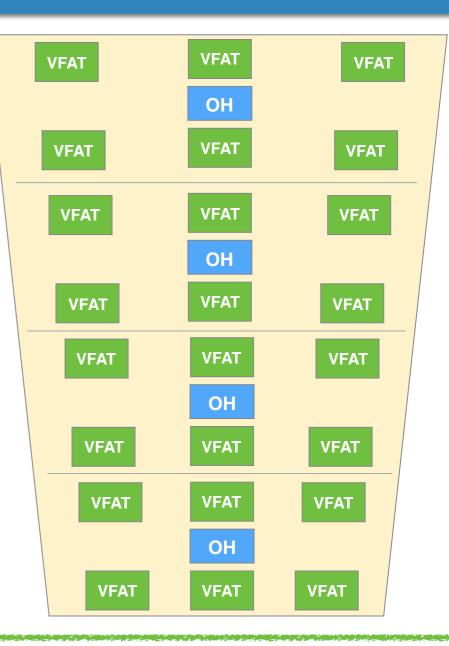
	V6 130T XC6VLX130T-2FF1156C	(ge11 fpga) V6 130T xc6vLx130T-1FF1156c	A7 200T xc7a200T-1ffg1156c	K7 325T xc7k325t-2ffg900c	2 of K7 160T XC7K160T-2FBG484C
Speed grade	-2	-1	-2	-2	-2
Logic Cells	128k	128k	215k	326k	162k x2
Link Speed	6.4 Gbps	3.2 Gbps	6.4 Gbps	9.6 Gbps	9.6 Gbps
# clusters / link / bx	8	4	8	12	12
# links needed	3	6	3	2	4
# of TX links per ME0 module (trig + data)	24	42	24	18	30
IO Available (>486 needed)	600	600	500	500	285 x2
FPGA Price (per board)	\$1647	\$1054	\$293	\$1343	\$520
FPGA Cost (total, 240 boards)	\$395280	\$252960	\$70320	\$322320	\$124800
Link Cost (est \$100 per link)	300	600	300	200	400
Cost (OH + Links), not including backend	460080	382560	135120	365520	211200

FPGA Summary

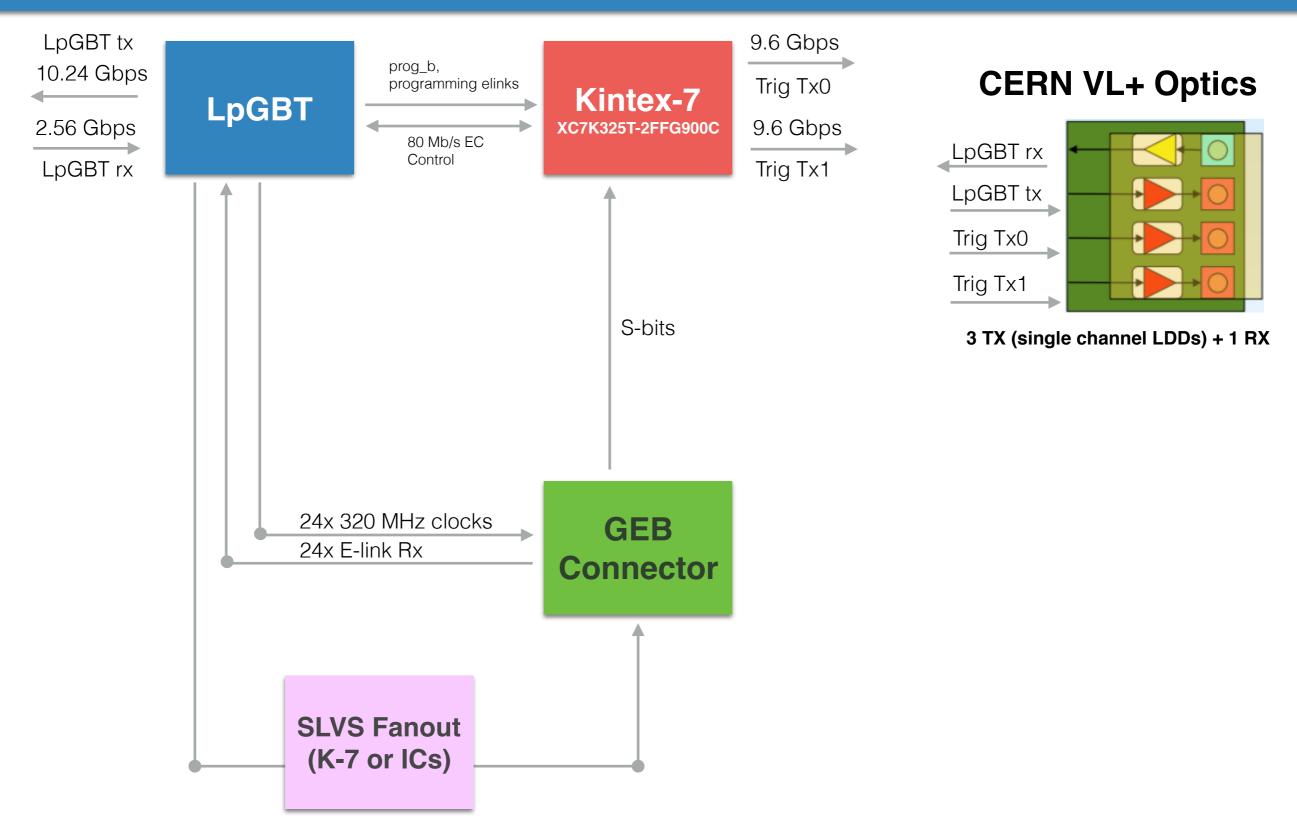
- 1x Artix-7 200T
 - ✓ Most inexpensive
 - * Needs more links... ok unless it changes backend card requirements
 - * Logic is most likely insufficient for ME0 (good choice for GE2/1?)
- 1x Kintex-7 325T
 - ✓ More logic and faster links than Artix-7
 - Monolithic FPGA is most flexible (but firmware will be a challenge)
 - * FPGAs are expensive
- 2x Kintex-7 160T
 - ✓ Inexpensive
 - Simple firmware, handling only half-chamber, most logic of any option
 - ✓ 70 additional spare pins—eases routing and provides capabilities for additional features (e.g. SLVS fanout)
 - Small packages / two FPGAs are easier to route (less congestion)
 - * Trigger compression logic and routing partitioned into half-chamber; need more trigger links
 - * 12 clusters per 1/2 chamber is insufficient for ME0 → need 4 trigger links (still fits well into backend)

Decisions

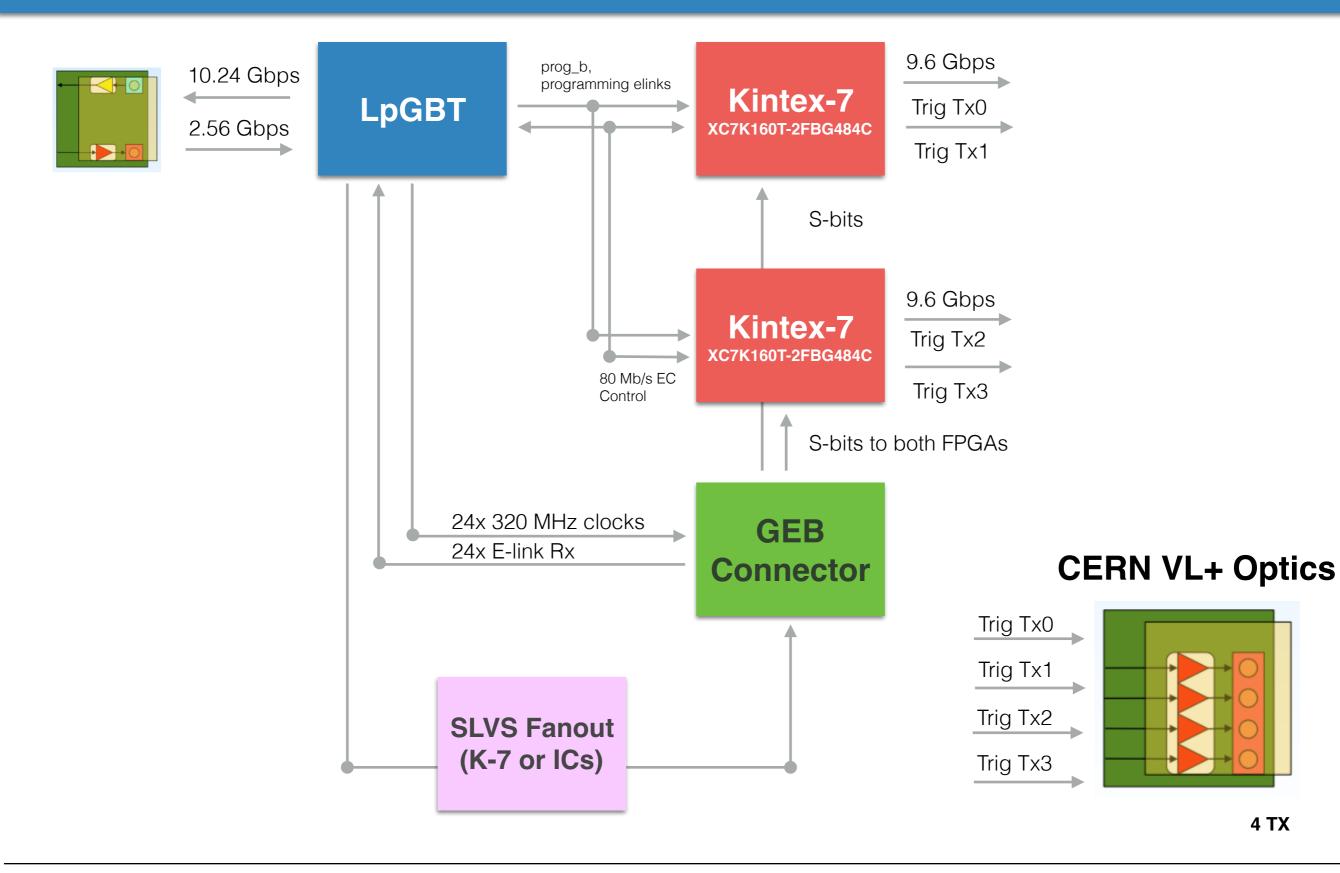
- Choice of FPGA:
 - If it fits into the backend (30 tx links per ME0)
 - Use dual Kintex-7 160T (24 clusters / bx / half-chamber)
 - else
 - Use single Kintex-7 325T (24 clusters / bx / full-chamber)
- Or... ask: why do we have an FPGA?
 - FPGA not doing anything fancy... just reducing link count
 - Complex logic on FPGA in harsh radiation environment is unhappy
 - Is there a way to eliminate the FPGA entirely?


FPGA-less ME0 at 1/2 Resolution

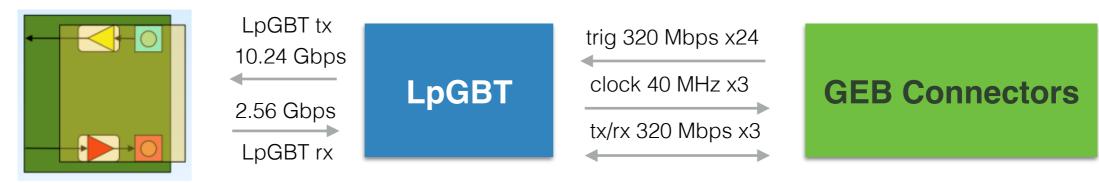
One LpGBT can handle trigger/DAQ from 3 VFATs


- 3 VFATs * 9 elinks per vfat (1 rxd, 8 trigger bits) = 27 e-links needed
- Operating GBT in FEC5 gives us 28 e-links
- Give up SoT... easy enough to reconstruct it on our own in firmware
- Use a very small (~vfat hybrid sized), very simple Optohybrid
 - Implementing only 2x LpGBT + Optics + baseboard connectors
 - Very low cost per unit
 - Covers only 1 or 2 ME0 partitions
 - Individual Rx elinks for each VFAT
- Needs 8 fiber / layer → 48 fibers per ME0
 - LpGBT receiver links complicated by asymmetric backend links
 e.g. in BCP.
 APD transmitter mezzanine ???
- No high speed signals crossing entire GEB… localized to very small portions of chamber

GEB is functionally split in 4—only DC crossing partition boundaries


- All components on detector are rad hard by design; distributed design has no single point of failure
- Crude cost estimates show ~no change in price (extra link cost offset by savings in OH FPGAs)

Monolithic FPGA Block Diagram



Dual Kintex-7 Block Diagram

FPGA-less Optohybrid

CERN VL+ Optics

ME0 OH Prototyping Proposal

Dependence on timelines of (1) LpGBT, (2) VL+, and (3) ME0 GEB will slow progress of development...

- Propose de-coupling part of the R&D from these external dependencies and developing an intermediate design
- 1st generation prototype:
 - Target full compatibility with GE1/1 GEB
 - + GBTx chip, match existing pinout and form factor, re-use much of the existing layout
 - + Allows testing & development far ahead of likely GEB schedule
 - Upgrade FPGA & use commercial 10 Gbps optics (e.g. a 4x 10Gbps QSFP+)
 - Can test fanout of SLVS output control signals to VFAT3, verify SLVS input compatibility of new FPGA family
 - Can test and gain experience w/ new FPGA & port firmware to new FPGA
 - Can verify SEU rates and TID robustness of new FPGA family
 - Can validate design on existing, working electronics systems and detectors; no dependence on new GEB / mechanical specs
 - Should be plug and play with current GE1/1

• 2nd/3rd generation prototypes:

- When VL+ is ready... upgrade optics
- When LpGBT is ready: leave FPGA design alone from 1st generation, upgrade GBTx —> LpGBT
- When GEB prototype specs are ready: update w/ real mechanical dimensions, pinouts of new GEB

Summary & Discussion Points

1. LpGBT control fanout

• FPGA or IC

2. SCA

- OK to remove?
- 3. FPGA choice, # of trigger fibers
 - Kintex-7?

4. no FPGA

• Will this work? do we want it?

5. Full or degraded resolution

- 640 Mbps signal integrity on GEB?
- Implications for logic requirements

Backup & References

7 Series Radiation Tests

• Kintex-7 Radiation Tests

- http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=7004593
- https://indico.esa.int/indico/event/59/session/8/contribution/28/material/slides/0.pdf
- http://iopscience.iop.org/article/10.1088/1748-0221/9/01/C01025/pdf
- http://cds.cern.ch/record/1995019/files/AIDA-CONF-2015-018.pdf?subformat=pdfa
- https://indico.cern.ch/event/489996/contributions/2291854/attachments/1345433/2030665/Kintex-7_irradiation_results_IFIN-HH.pdf
- https://indico.gsi.de/event/5137/contribution/6/material/slides/0.pdf

Examples of Trigger Data Formats

9.6 Gbps provides 192 bits / bx

SDR	8 bits comma	12 clusters @ 14 bits ea	12 bits parity	4 bits spare
DDR	8 bits comma	12 clusters @ 15 bits ea		12 bits parity

6.4 Gbps provides 128 bits / bx

SDR	8 bits comma	8 clusters @ 14 bits ea	8 bits parity
DDR	8 bits comma	8 clusters @ 15 bits ea	

3.2 Gbps provides 64 bits / bx

SDR	8 bits comma	4 clusters @ 14 bits ea		GE1/1 Format
DDR	8 bits comma	3 clusters @ 15 bits ea 3 bits parity	1 bit spare	

FPGA-less Option at Full Resolution

One LpGBT can handle trigger/DAQ from 3 VFATs

- Much more data
 - Trigger: 2x LpGBTs handle 3 VFATs
 - Control: 1x LpGBT handles 24 VFATs
- Per layer, 17 LpGBT. 102 per ME0.
 - Yikes!
 - ✦ Full BCP per ME0
 - ◆ Control link (backend → lpgbt) is complicated by asymmetric link quantity

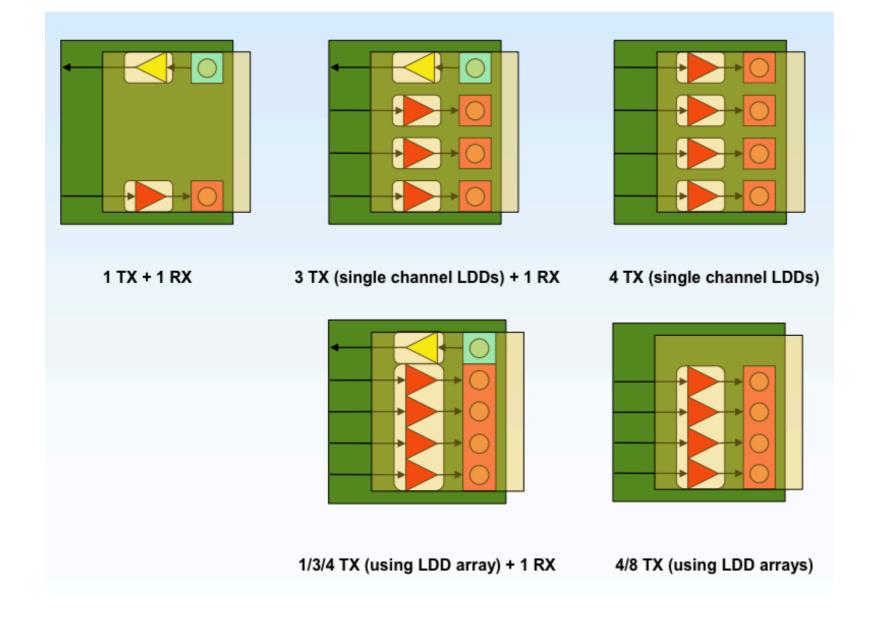
Xilinx Product Tables

- 7 Series Product Table:
 - https://www.xilinx.com/support/documentation/selection-guides/7-series-product-selection-guide.pdf
- Virtex 6 Product Table:
 - https://www.xilinx.com/support/documentation/selection-guides/virtex6-product-table.pdf

		Description			Speed Grade									
	Symbol			Output Divider	-3 (1.0V) -2			-2 (1.0V) -2LE (1.0V)		-1 (1.0V) -1LI (0.95V) -1Q (1.0V) -1M (1.0V)		-2LE (0.9V)		
Artix-7											Units			
AIUX-7					FF FB SB	FG FT CS CP	FB SB	FT CS	FF FB SB RB RS	FG FT CS CP	FF FB SB	FG FT CS CP		
	F _{GTPMAX}	Maximum GTP trans	ceiver da	ata rate	6.6	6.25	6.6 6	6.25 3	3.75	3.75	3.75	3.75	Gb/s	
	Symbol	Description				Speed Grade				Units				
λ /: λ Δ							-3	3	-2	-1	-1	IL		
Virtex-6	F _{GTXMAX}	Maximum GTX transceiver data rate				6.	6	6.6	5.0	5	.0	Gb/s		
	F _{GPLLMAX}	Maximum PLL frequency				3.3	(1) 3	3.3 <mark>(1)</mark>	2.7	2	.7	GHz		
	F _{GPLLMIN}	Minimum PLL frequency				1.	2	1.2	1.2	1	.2	GHz		
		Description	Output Divider	Speed Grade ⁽¹⁾										
	0 mbal			-3 (1.0V)			-2LÈ (-2 (1.0V) -2LE (1.0V) -2LI (0.95V) -1 (1.0V) ⁽²⁾ -1 (1.0V) ⁽²⁾ -1 (1.0V) ⁽²⁾			-2LE (0.9V) ⁽³⁾		Units	
Kintex-7	Symbol					_	Packa	Package Type				onna		
				FF	FBG484	FBG676 FBG900	FF RF FBG484	FBG676 FBG900		FB	FF RF	FB		
	F _{GTXMAX} ⁽⁴⁾	Maximum GTX transo data rate	ceiver	12.5 ⁽⁵⁾	10.3125 ⁽⁶	6.6	10.3125 ⁽⁶⁾	6.6	8.0	6.6	6.6	6.6	Gb/s	

LpGBT Specs Summary

E-Links:


- Down-link:
 - Bandwidths: 80/160/320 Mb/s
 - Number of links^{*}: 16/8/4
 - "Mirror" function:
 - 80 Mb/s: no;
 - 160 Mb/s: each channel is available on 2 outputs;
 - 320 Mb/s: each channel is available on 4 outputs.
 - One EC channel @ 80 Mbit/s
- Up-Link:
 - FEC5 @ 5.12 Gb/s:
 - Data rate: 160 / 320 / 640 Mb/s
 - # eLinks*: 28 / 14 / 7
 - FEC5 @ 10.24 Gb/s:
 - Bandwidth: 320 / 640 / 1280 Mb/s
 - # eLinks*: 28 / 14 / 7
 - FEC12 @ 5.12 Gb/s:
 - Bandwidth: 160 / 320 / 640 Mb/s
 - # eLinks*: 24 / 12 / 6
 - FEC12 @ 10.24 Gb/s:
 - Bandwidth: 320 / 640 / 1280 Mb/s
 - # eLinks*: 24 / 12 / 6
 - One EC channel @ 80 Mbit/s
 - Phase alignment on a per channel basis:
 - User programable phase
 - Automatic phase tracking

https://espace.cern.ch/GBT-Project/LpGBT/Specifications/LpGbtxSpecifications.pdf

rxData[31:0] eLinkOut[15:0 DEC rxEc[1:0] cdrOut [63:0] 2.56 Gb/s ecOut ePortTx & rxlc[1:0] 40/.../320 MH 40 MHz **DSCR** Phase psClk[3:0] 40/.../1280 MHz Shifter eClock[27:0 5.12 / 10.24 Gb/s cnt[x:0] ecClock ePortClk Control SerDes 40/.../1280 MHz 40 MHz txlc[1:0] I2C (x3) adcIn[7:0] SCA 40 MHz pio[15:0] (Reduced set) SCR txData[159:0 serIn [255:0] refClk40MHz & eLinkIn[27:0] txEc[3:0] ePortRx ENC ecIn 40 MHz 40/.../1280 MHz analog data 40 / 80 / 160 / 320 / 640 /1280 MHz **LpGBTX** contro clock

LpGBTX Block Diagram

CERN VL+ Specs Summary

https://espace.cern.ch/project-Versatile-Link-Plus/Shared%20Documents/Presentations/2016_VLplus_AtlasUpgradeWeek_17Nov16.pdf

Voltage Standards & SLVS

Differing specs on LVDS (supported on FPGA) and SLVS (on VFAT/GBT). Uhg..

https://indico.cern.ch/event/225746/contributions/475189/attachments/371268/516635/IPblocks.pdf

- Kintex-7 and Virtex-6 standards are very similar...
 - Virtex-6 works.. so Kintex should be ok.. but not sure
 - VFAT3 manual has no specs

	Virtex-6 LVDS_25	Kintex-7 LVDS	Kintex-7 LVDS_25	VFAT3 SLVS Requirement
Output Voltage High (Max), V	1.675 V	1.675 V	1.675 V	?
Output Voltage Min (Min)	0.825 V	0.825 V	0.7 V	?
Vdiff Out (Min/Typ/Max) mV	247/350/600 mV	247/350/600 mV	247/350/600 mV	?
Vcommon Out (Min/Typ/Max) V	1.075/1.25/1.425 V	1/1.2/1.425 V	1/1.2/1.425 V	?
Vdiff In (Min/Typ/Max) mV	100/350/600 mV	100/350/600 mV	100/350/600 mV	? / 200 / ?
Vcommon In (Min/Typ/Max) V	0.3/1.2/2.2 V	0.3/1.2/1.425 V	0.3/1.2/1.5 V	?