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• Predicting the small-pT regime:  

• methods/tools - differences pertinent to this discussion 

• Review of resummation in RadISH - relevant aspects 

• Theory and generation of radiation 

• Matching to fixed order and estimate of uncertainties 

• Treatment of Landau singularity 

• Predictions for fiducial distributions at N3LL+NNLO  

• resummation vs. fixed-order, uncertainties, and theory vs. data
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Small-pT spectrum

• Collins, Soper, Sterman 
(CSS) 

• Resummation in impact 
parameter space 

• Codes: e.g. 
• DYRES (NNLL) 
• RESBOS (NNLL)

Resummations
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(N)LOPS  
(LL most times for pT,  

but fully exclusive)

Sherpa
• SCET 

• Resummation in impact 
parameter/momentum 
space 

• Codes: e.g. 
• CuTe  

(approx. N3LL)

• Branching algorithm 

• Resummat ion in 
momentum space 

• Codes: e.g. 
• RadISH (N3LL)
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‣ Logarithmic order 

‣ Resummations require matching to fixed-order; e.g. NLO (DYRES, CuTe, RESBOS) or 
NNLO (RadISH+NNLOJet)

0

[see	talks	by	V.	Vaidya	 
and	F.	Tackmann][see	talk	by	C.-P.	Yuan]

[this	talk]

*

*	In	the	case	of	pT,	a	power-suppressed		
component	is	also	present	as	pT	->	0



All-order predictions: (practical) differences
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‣ Regardless of the deep theoretical differences between the formulations (not relevant for this 
meeting), all above approaches can reach the same logarithmic accuracy. 

‣ However, other differences persist in the default choices of the various approaches 

‣ Resummation scheme : starting from NNLL onwards, one has some freedom in deciding how 
much of the subleading corrections (i.e. beyond the nominal logarithmic accuracy) are either 
kept in the Sudakov exponent or are expanded out (not at fixed order!). Analogous differences 
arise from the scale setting procedure, e.g. at the differential/cumulative level (typically SCET), 
or from approximating the measurement function in a factorisation theorem,… 

‣ Each of the above codes uses its own scheme, hence inevitably leading to numerical (always 
logarithmically subleading) differences. The higher the order, the smaller the difference 

‣ Scales/uncertainties : resummation uncertainties (due to missing higher-order corrections) are 
estimated in different ways: e.g. resummation, renormalisation, factorisation scales (RadISH, 
DYRES), additional resummation scales (typical in SCET, sometimes used in CSS too) 

‣ Turning off resummation effects at large pT : theoretically ambiguous, several choices are 
adopted; profile scales (e.g. SCET), modified b-space logarithms (e.g. DYRES), constraint on phase 
space of the radiation (e.g. RadISH). These effects are always regular (non-logarithmic) in pT, 
differences reduce with higher orders. 

‣ Treatment of the Landau pole : cutoff, b* prescription, NP models (e.g. gaussian smearing); 
differences are suppressed by powers of the c.o.m. energy 



‣ The formulation is based on the concept of rIRC safety, that allows one to parametrise the all-
order squared amplitudes in terms of lower-order building blocks, and to identify the precise 
phase space regions that contribute at a given logarithmic order 
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↵s(kt1)

↵s(kti)

↵s(ktj)

↵s(ktn)

...

. . .
. . . ...

...

Many independent soft-collinear 
gluons strongly ordered both in 
angle and transverse momentum

`+ `�

e.g.	LL

V ({p̃}, k1, . . . , kn) = |~kt1 + · · ·+ ~ktn|

RadISH: a brief theory overview

All-order	form	factor

V(�B) =
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↵s(kti)

↵s(ktj)

↵s(ktn)

...

. . .
. . . ...

Many independent soft-collinear 
gluons strongly ordered in angle but 

comparable transverse momenta

soft gluons split into pairs
independent hard-collinear 

emissions

`+ `�

‣ The formulation is based on the concept of rIRC safety, that allows one to parametrise the all-
order squared amplitudes in terms of lower-order building blocks, and to identify the precise 
phase space regions that contribute at a given logarithmic order 

e.g.	NLL

V ({p̃}, k1, . . . , kn) = |~kt1 + · · ·+ ~ktn|

RadISH: a brief theory overview
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↵s(kt1)

↵s(kti)

↵s(ktj)

↵s(ktn)

...

. . .
. . . ...

Many independent soft-collinear 
gluons with comparable angles 

and transverse momenta

further, less singular,  
soft splittings possible

hard-collinear emissions  
can split

`+ `�

Higher logarithmic order 
implies a more accurate 

description of the radiation 
dynamics and its kinematics 

in less singular limits

‣ The formulation is based on the concept of rIRC safety, that allows one to parametrise the all-
order squared amplitudes in terms of lower-order building blocks, and to identify the precise 
phase space regions that contribute at a given logarithmic order 

↵s(ktj)

V ({p̃}, k1, . . . , kn) = |~kt1 + · · ·+ ~ktn|

e.g.	NNLL

RadISH: a brief theory overview
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‣ Given that the observable is only sensitive to the total pt of the radiation, one can organise the 
radiation into clusters of at least one emission (defined at the squared-amplitude level - no jets 
involved) and integrate over the emissions within each cluster (including corresponding real-
virtual corrections) at fixed kt and rapidity (up to four partons at N3LL). Analytical cancellation 
of corresponding IRC poles 

+ +

| {z }
↵sL2

| {z }
+↵2

sL
2

↵2
sL

2

+ . . .

e.g.	NLL

RadISH: a brief theory overview

++



➡	e.g.	gluon	emissions	off	quark	legs

‣ The events are then obtained by generating a ISR shower of such clusters of emissions 

‣ When a cluster gets unresolved, one needs to cancel the IRC singularities against the ones in 
the virtual corrections to the quark form factor        . This is done by means of a phase space 
slicing: 

‣ clusters with total transverse momentum smaller than                  (unresolved) are handled analytically 
and combined with the form factor : this defines a no-emission probability (Sudakov radiator) 

‣ resolved clusters are generated numerically with a Monte Carlo algorithm, similar in spirit to a (semi-
inclusive) parton shower. The limit          is numerically stable (cutoff at               ) 

‣ In the resolved radiation one has                , which ultimately sets the boundary with the NP regime
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RadISH: a brief theory overview

...

. . .
. . . ...

...

V(�B)

Q0 = ✏kt1

kti ⇠ kt1

Transverse	momentum		
of	hardest	cluster

✏ ! 0 ✏ ⇠ e�20

[Catani,	Grazzini	’11][Catani	et	al.	‘12]
[Gehrmann,	Luebbert,	Yang	‘14]
[De	Florian,	Grazzini	’01][Davies,	Stirling	‘84]

[Vladimirov	’16]	[Li,	Zhu	’16]	

The	integrated	emission	probabilities	up	to	N3LL	can	
be	expressed	in	terms	of	known	anomalous	dimensions/

coefficient	functions:	
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Implementation: recoil of leptonic system
‣ The generation starts with fully differential Born (i.e. p p -> Z) events, which are then showered 

if they pass the phase-space cuts 

‣ Formally speaking, the resummation is valid in a Born-like kinematics. Therefore we decide to 
preserve the Born event, while modifying the transverse momentum of the Z boson. 

‣ This violation of momentum conservation is regular in pT, and hence ambiguous in the 
resummed event. For this reason it is avoided in the following (technically recovered in 
matching to fixed-order at a later stage) 

‣ If necessary it could be easily implemented (e.g. through a simple boost). We consider 
including this feature in future work 

‣ As a consequence, the action of fiducial cuts as well as the definition of dynamical scales will 
differ from the fixed-order counterpart unless pT -> 0 (more on this later) 

‣ RadISH generates N3LL events for the resummed cross section, and for its fixed-order 
expansion (used in matching). The matching to fixed-order is performed at the histogram level 

d⌃ = d�
Born

⌦ d�
Radiation

d⌃ = d�
Born

⇥ d�
Radiation

No	kinematic	cross	talk	
(i.e.	lepton	momenta	are	left	

untouched	by	the	shower)
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Matching to fixed order
‣ Away from the pT -> 0 limit, regular terms due to momentum conservation as well as exact 

matrix elements become relevant. These are restored at fixed-order in perturbation theory via a 
two-step matching procedure. The NNLO fixed-order is provided by NNLOJet 

‣ Firstly, we want to ensure that the resummation does not affect the high-pT tail of the spectrum 

‣ modify the available rapidity range for each cluster so that the corresponding phase space 
closes up at large pT. This is realised by means of the following replacement 

‣ p is a free parameter in the calculation 

‣ combine the resulting histograms for the resummed cumulative distribution and its fixed-order 
expansion with the fixed-order counterpart at (ideally) N3LO, i.e.

|⌘i| . ln
Q
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! 1
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Qp

kpt1
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◆
�! d⌃

dpt
⇠ 1

p1+p
t

, for pt � Q

⌃MAT(pt) =
⌃RES(pt)

L(µF )


L(µF )

⌃FO(pt)

⌃EXP(pt)

�

EXPANDED

We set the N3LO correction to zero in 
the DY case (currently unknown). This 
ambiguity is subleading (N4LL) in the 

differential distribution

Choice of matching scheme is also ambiguous. 
Difference between multiplicative and additive 

solution found to be small 

⌃MAT(pt) = ⌃RES(pt) + ⌃FO(pt)� ⌃EXP(pt)

Asymptotic	value	of	⌃RES(pt)

⌃FO(pt) = �N3LO � ⌃NNLOJet(pT > pt)

[Gehrmann-De	Ridder,	T.	Gehrmann,	E.W.N.	Glover,	A.	Huss,	T.A.	Morgan	’16]

This	induces	(only)	
regular	terms	in	the	

pT	spectrum
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Small-pT limit and Landau pole
‣ The strong coupling in the Sudakov radiator and in the emission probabilities features a 

Landau singularity at  

‣ We cut off the region below this scale by setting the emission probability to zero; parton 
densities are also frozen. This is the only actual cutoff in the calculation. 

‣ In practice, this cutoff is (almost) never an issue :  

‣ the small-pT limit is dominated by events with                       (power-like spectrum)

↵s(µR)�0 ln
Q

kt1
=

1

2

�! kt1 ' 0.09GeV (for µR = Q = MZ)
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➡	e.g.	in	RadISH,	at	LL

NB: this fact does not imply that there are 
no NP corrections at scales of order ~ GeV, 

i.e. from intrinsic kt, not estimated here



Computational setup
‣ The results below are obtained with the following fiducial cuts, according to the 8 TeV ATLAS 

measurement 

‣ The PDF set is NNPDF3.0 and the central scales are  

‣ We always work with 5 active (massless) flavours, i.e. neither HQ effects nor thresholds in PDFs  

‣ Uncertainties are estimated as the envelope of the following variations : 

‣ 7-point variation of renormalisation/factorisation scales of a factor of two about their central 
value 

‣ For central renormalisation and factorisation scales, the resummation scale is varied by a factor of 
two around its central value 

‣ By default we set p=4 , and checked that a variation by one unit does not produce significant 
differences

µR = µF = MT =
q

M2
`` + p2t , Q =

M``

2
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pTll distribution
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[data from ATLAS 1512.02192]
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➡ Good convergence of perturbative series 

➡ Residual uncertainty in the 3-5% range 

➡ Inclusion of N3LL+NNLO corrections leads 
to shape distortion and better agreement with 
data 

➡ Similar conclusions when one gets more 
exclusive in the Z rapidity (see paper)



distribution
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➡ Similar conclusions for angular observables, 
except for low invariant mass (already at NNLO) 

➡ Small residual perturbative uncertainty 

➡ Many more plots in the paper
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[data from ATLAS 1512.02192]
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➡ Small dependence on the central resummation 
scale - agreement within uncertainties  

➡The choice of p ensures that the resummation 
vanishes at a rate slightly faster than the fixed-order 
one

Choice of the resummation scale
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[data from ATLAS 1512.02192]
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➡ NNLO alone works well 
above ~ 20 GeV, and it 
gives % corrections even 
for pT < 10 GeV  

➡ In presence of fiducial 
cuts, the F.O. converges to 
the logarithmic expansion 
ve r y l a te (d i f f e rence 
between Z+jets and Z 
phase space) 

➡ A faster convergence 
has been observed at the 
level of inclusive Z (also w/ 
fixed scales) 

➡Th is e f fec t i s l ess 
pronounced at larger 
invariant masses (larger 
logarithms)

Matching vs. Resummation
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➡ With fiducial cuts, the fixed-order converges to the logarithmic 
expansion very late (difference between Z+jets and Z phase 
space) 

➡ NNLO coefficient converges slightly faster due to higher 
logarithmic powers 

➡ Convergence could be shifted towards larger pT values with an  
implementation of recoil in the lepton kinematics

Fixed order vs. Resummation

p p -> Z -> ll, 8 TeV
fiducial cuts, 116 GeV < Mll < 150 GeV
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Conclusions
‣ State of the art predictions for (Higgs and) DY distributions at N3LL+NNLO 

obtained with RadISH matched to NNLOJet 

‣ Residual perturbative uncertainties at the few-% level in different fiducial 
distributions, and perturbative results in good agreement with the data 

‣ We do not include effects of quark masses nor of non-perturbative 
corrections - both relevant at this level of precision 

‣ The calculation is fully differential in the Born kinematics. However, for the 
time being the distribution of Born variables is by construction identical to 
the fixed-order prediction 

‣ The recoil due to the all-order radiation can be propagated to the final-
state leptons, although the prescription is by definition ambiguous (needs 
inclusion of full power corrections). This will be done in future work 

‣ Interesting to repeat the study for W production and pTZ/PTW ratio
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Thank you for listening
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• Write all-order cross section as (                                                      ) 

• Recast all-order squared ME for n real emissions as iteration of correlated blocks 

• Scaling of the observable in the presence of radiation must preserve the above hierarchy

V ({p̃}, k1, . . . , kn) = |~kt1 + · · ·+ ~ktn|

Real	emissions

e.g.	soft	radiation	(analogous	considerations	for	hard-collinear)

21

Squared amplitude decomposition



• Write all-order cross section as (                                                      ) 

• Recast all-order squared ME for n real emissions as iteration of correlated blocks 

• Scaling of the observable in the presence of radiation must preserve the above hierarchy

V ({p̃}, k1, . . . , kn) = |~kt1 + · · ·+ ~ktn|

Real	emissions

e.g.	soft	radiation	(analogous	considerations	for	hard-collinear)

LL

21

Squared amplitude decomposition



• Write all-order cross section as (                                                      ) 

• Recast all-order squared ME for n real emissions as iteration of correlated blocks 

• Scaling of the observable in the presence of radiation must preserve the above hierarchy

V ({p̃}, k1, . . . , kn) = |~kt1 + · · ·+ ~ktn|

Real	emissions

e.g.	soft	radiation	(analogous	considerations	for	hard-collinear)

LL

NLL

NLL

21

Squared amplitude decomposition



• Write all-order cross section as (                                                      ) 

• Recast all-order squared ME for n real emissions as iteration of correlated blocks 

• Scaling of the observable in the presence of radiation must preserve the above hierarchy

V ({p̃}, k1, . . . , kn) = |~kt1 + · · ·+ ~ktn|

Real	emissions

e.g.	soft	radiation	(analogous	considerations	for	hard-collinear)

LL

NLL

NNLL

NLL

21

Squared amplitude decomposition



• One great simplification: choice of the resolution variable such that correlated 
blocks entering at          in the unresolved radiation only contribute at             in 
the resolved case 

• i.e. we can expand out the cutoff dependence and retain in the Radiator only 
the terms necessary to cancel the singularities in the resolved radiation

Monte Carlo formulation

...

. . .
. . . ...

...
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NkLL

R(✏kt1) = R(kt1) +R0(kt1) ln
1

✏
+

1

2
R00(kt1) ln

2 1

✏
+ . . .

R0(kti) = R0(kt1) +R00(kt1) ln
kt1
kti

+ . . .

e.g.	at	NLL

'

Expansion	is	safe	since	 
in	the	resolved	

radiation	
kt1/kti ⇠ 1

Nk+1LL

Z
dkt1
kt1

@L
⇣
�e�R(kt1)L(kt1)

⌘Z
dZ[{R0(kt1), ki}]⇥(v � V ({p̃}, k1, . . . , kn+1))

Z
dZ[{R0(kt1), ki}] = ✏R

0(kt1)
1X

n=0

1

n!

n+1Y

i=2

Z kt1

✏kt1

dkti
kti

R0(kt1)



• One great simplification: choice of the resolution variable such that correlated 
blocks entering at          in the unresolved radiation only contribute at             in 
the resolved case 

• i.e. we can expand out the cutoff dependence and retain in the Radiator only 
the terms necessary to cancel the singularities in the resolved radiation 

• Corrections beyond NLL are obtained as follows 

• Add subleading effects in the Sudakov radiator and constants 

• Correct a fixed number of the NLL resolved emissions: 

• only one at NNLL 

• two at N3LL 
• …

Monte Carlo formulation
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NkLL

R(✏kt1) = R(kt1) +R0(kt1) ln
1

✏
+

1

2
R00(kt1) ln

2 1

✏
+ . . .

R0(kti) = R0(kt1) +R00(kt1) ln
kt1
kti

+ . . .

Expansion	is	safe	since	 
in	the	resolved	

radiation	
kt1/kti ⇠ 1

Nk+1LL



• Since the transverse momenta of the resolved reals are of the same order, we can expand the 
whole integrand about              up to the desired logarithmic accuracy 

• This expansion allows us to compute higher-order corrections to the NLL resolved reals by 
simply including one correction at a time

Numerical implementation: RadISH

kti ⇠ kt1

‣ Coefficient	functions	and	
hard-virtual	corrections	
absorbed	into	effective	
parton	luminosities	

‣ The	ensemble	of	NLL	real	
emissions	dZ	is	generated	
as	a	parton	shower.	Fast	
numerical	evaluation	with	
Monte-Carlo	methods.	
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e.g.	expansion	up	to	NLL



• Since the transverse momenta of the resolved reals are of the same order, we can expand the 
whole integrand about              up to the desired logarithmic accuracy 

• This expansion allows us to compute higher-order corrections to the NLL resolved reals by 
simply including one correction at a time

kti ⇠ kt1

‣ Coefficient	functions	and	
hard-virtual	corrections	
absorbed	into	effective	
parton	luminosities	

‣ The	ensemble	of	NLL	real	
emissions	dZ	is	generated	
as	a	parton	shower.	Fast	
numerical	evaluation	with	
Monte-Carlo	methods.	
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kti/kt1 = ⇣i = O(1)

e.g.	expansion	up	to	NLL

Numerical implementation: RadISH



• Since the transverse momenta of the resolved reals are of the same order, we can expand the 
whole integrand about              up to the desired logarithmic accuracy 

• This expansion allows us to compute higher-order corrections to the NLL resolved reals by 
simply including one correction at a time
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kti ⇠ kt1

‣ Coefficient	functions	and	
hard-virtual	corrections	
absorbed	into	effective	
parton	luminosities	

‣ The	ensemble	of	NLL	real	
emissions	dZ	is	generated	
as	a	parton	shower.	Fast	
numerical	evaluation	with	
Monte-Carlo	methods.	

e.g.	expansion	up	to	NNLL

Numerical implementation: RadISH



• Since the transverse momenta of the resolved reals are of the same order, we can expand the 
whole integrand about              up to the desired logarithmic accuracy 

• This expansion allows us to compute higher-order corrections to the NLL resolved reals by 
simply including one correction at a time
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kti ⇠ kt1

‣ Coefficient	functions	and	
hard-virtual	corrections	
absorbed	into	effective	
parton	luminosities	

‣ The	ensemble	of	NLL	real	
emissions	dZ	is	generated	
as	a	parton	shower.	Fast	
numerical	evaluation	with	
Monte-Carlo	methods.	

e.g.	expansion	up	to	N3LL

Numerical implementation: RadISH
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• Hard-collinear emissions off initial-state legs require some care in the treatment of 
kinematics. Final result reads 

• Formulation equivalent to b-space result, up to a scheme change. Using the delta 
representation for the distribution one finds

Equivalence to CSS formula
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