Resummation in SCET and Progress in Geneva

Frank Tackmann

Deutsches Elektronen-Synchrotron

EWWG Workshop Orsay, May 23-25, 2018

[based on various work in collaboration with Markus Ebert, Johannes Michel, Iain Stewart, HuaXing Zhu, Christian Bauer, Simone Alioli]

Power Expansion.

< 67 ►

Logarithms.

Consider an observable or measurement that resolves or restricts the phase-space of additional real emissions

- Say it only allows real emissions up to momentum scales of ~ p (i.e. only allows soft and/or collinear emissions but no hard emissions)
- Virtual corrections are unconstrained and contribute up to the hard process scale $\sim Q \equiv \sqrt{q^2} \equiv m_V$
- As a result the cancellation between real and virtual IR singularities only works up to the scale of the real emission, leaving remnant logs of p/Q

$$\int_0^{p} \mathrm{d}k_{\mathrm{real}} \, rac{1}{k_{\mathrm{real}}} - \int_0^{Q} \mathrm{d}\ell_{\mathrm{virt}} \, rac{1}{\ell_{\mathrm{virt}}} = \ln rac{p}{Q}$$

Soft-collinear singularities cause two logarithms at each α_s order

$$egin{aligned} \sigma &= 1 + lpha_s \Big[\ln^2 rac{p}{Q} + \ln rac{p}{Q} + 1 \Big] \ &+ lpha_s^2 \Big[\ln^4 rac{p}{Q} + \ln^3 rac{p}{Q} + \ln^2 rac{p}{Q} + \ln rac{p}{Q} + 1 \Big] + \cdots \end{aligned}$$

< 47 >

Power Expansion - Singular vs. Nonsingular.

Define scaling variable $au \equiv p^2/Q^2$ and expand in powers of au

Integrated (cumulative) distribution:

$$\begin{aligned} \sigma(\tau) &= \theta(\tau) + \alpha_s \left[\ln^2 \tau + \ln \tau + \theta(\tau) + F_1^{\text{nons}}(\tau) \right] \\ &+ \alpha_s^2 \left[\ln^4 \tau + \ln^3 \tau + \ln^2 \tau + \ln \tau + \theta(\tau) + F_2^{\text{nons}}(\tau) \right] \\ &+ \vdots \vdots \vdots \vdots \vdots \cdots + \dots \right] \\ &= \sigma^{(0)} + \mathcal{O}(\tau) \end{aligned}$$

For $au \ll 1$ two related things happen

- Leading-power terms $d\sigma^{(0)}$ ("singular") dominate over $\mathcal{O}(\tau)$ power corrections ("nonsingular")
 - $lacksymbol{ heta}$ $au f_k^{
 m nons}(au)$ and $F_k^{
 m nons}(au^{
 m cut})$ vanish for au o 0

• As au decreases logs grow large deteriorating the $lpha_s$ expansion

Resummation sums up leading-power terms to all orders in α_s

Power Expansion - Singular vs. Nonsingular.

Define scaling variable $\tau \equiv p^2/Q^2$ and expand in powers of τ

Differential distribution (spectrum in τ):

$$\begin{aligned} \frac{\mathrm{d}\sigma}{\mathrm{d}\tau} &= \delta(\tau) + \alpha_s \Big[\frac{\mathrm{ln}\,\tau}{\tau} + \frac{1}{\tau} &+ \delta(\tau) &+ f_1^{\mathrm{nons}}(\tau) \Big] \\ &+ \alpha_s^2 \Big[\frac{\mathrm{ln}^3\,\tau}{\tau} + \frac{\mathrm{ln}^2\,\tau}{\tau} &+ \frac{\mathrm{ln}\,\tau}{\tau} + \frac{1}{\tau} + \delta(\tau) + f_2^{\mathrm{nons}}(\tau) \Big] \\ &+ &\vdots &\vdots &\vdots &\vdots &\ddots + \dots \Big] \\ &= & \mathrm{d}\sigma^{(0)}/\mathrm{d}\tau &+ \mathcal{O}(\tau)/\tau \end{aligned}$$

For $au \ll 1$ two related things happen

• Leading-power terms $d\sigma^{(0)}$ ("singular") dominate over $\mathcal{O}(\tau)$ power corrections ("nonsingular")

• $au f_k^{
m nons}(au)$ and $F_k^{
m nons}(au^{
m cut})$ vanish for au o 0

• As au decreases logs grow large deteriorating the $lpha_s$ expansion

Resummation sums up leading-power terms to all orders in α_s

Power Expansion - Singular vs. Nonsingular.

Define scaling variable $\tau \equiv p^2/Q^2$ and expand in powers of τ

Differential distribution (spectrum in τ):

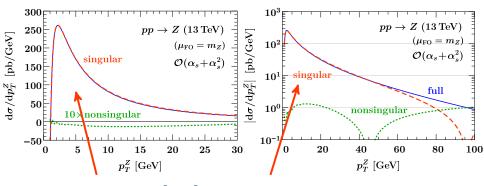
$$\begin{split} \frac{\mathrm{d}\sigma}{\mathrm{d}\tau} &= \delta(\tau) + \alpha_s \Big[\frac{\mathrm{ln}\,\tau}{\tau} + \frac{1}{\tau} &+ \delta(\tau) &+ f_1^{\mathrm{nons}}(\tau) \Big] \\ &+ \alpha_s^2 \Big[\frac{\mathrm{ln}^3\,\tau}{\tau} + \frac{\mathrm{ln}^2\,\tau}{\tau} &+ \frac{\mathrm{ln}\,\tau}{\tau} + \frac{1}{\tau} + \delta(\tau) + f_2^{\mathrm{nons}}(\tau) \Big] \\ &+ &\vdots &\vdots &\vdots &\vdots &\ddots + \dots \Big] \\ &= & \mathrm{d}\sigma^{(0)}/\mathrm{d}\tau &+ \mathcal{O}(\tau)/\tau \end{split}$$

A word on fixed-order counting

- Power expansion and resummation builds on V+0-jet Born process
 - Includes $\delta(\tau)$ (V+0 virtuals), which also feed into higher-order log terms
- Leading $\delta(\tau)$ is "LO₀", α_s, α_s^2 are included at "NLO₀", "NNLO₀", etc.
- Without $\delta(\tau)$: α_s, α_s^2 are "LO₁", "NLO₁", etc. of V+1-jet process

< 47 >

Regions of Phase Space.

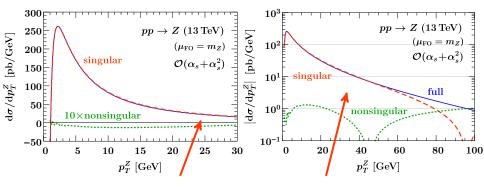


Very small au (here $au\equiv p_T^2/m_Z^2$)

- Fixed-order expansion breaks down (as we will see shortly ...)
- Resummation of leading-power terms is necessary to obtain meaningful predictions (which includes reliable uncertainties)
- Power-suppressed terms are negligible

< 🗇 >

Regions of Phase Space.

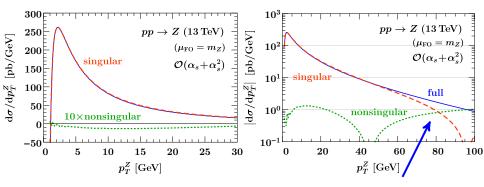


Moderately small $au \sim 0.1 - 0.2$

- Fixed-order expansion still possible (as we will see shortly ...)
- Question is not whether one must resum or whether FO is still okay, but whether resummation is allowed and beneficial, i.e., improves predictions
- Simple answer: Yes, as long as power corrections are subdominant

< (7)

Regions of Phase Space.

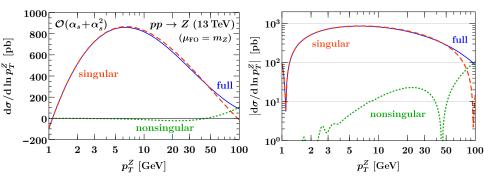


Large $au\gtrsim 0.3-0.5$

- Power expansion in au becomes meaningless
- Large cancellations between formally leading and subleading power terms. Resummation would spoil these cancellations, which is the (perhaps only) reason why it must be turned off here
- Fixed-order calculation of V+1-jet process provides full result

< 🗇 >

Change of Variables.



Convenient to change from τ to $\ln \tau$ (and we cannot plot the $\delta(\tau)$ anyway)

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\tau} = \delta(\tau) + \alpha_s \Big[\frac{\mathrm{ln}\,\tau}{\tau} + \frac{1}{\tau} + \delta(\tau) + f_1^{\mathrm{nons}}(\tau) \Big] + \mathcal{O}(\alpha_s^2)$$
$$\frac{\mathrm{d}\sigma}{\mathrm{d}\ln\tau} \equiv \tau \frac{\mathrm{d}\sigma}{\mathrm{d}\tau} = 0 + \alpha_s \Big[\mathrm{ln}\,\tau + 1 + 0 + e^{\mathrm{ln}\,\tau} f_1^{\mathrm{nons}}(e^{\mathrm{ln}\,\tau}) \Big] + \mathcal{O}(\alpha_s^2)$$

< 67 ►

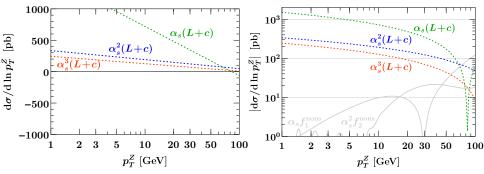
Different Orders in α_s .



Power expansion works very well $(au=p_T^2/m_Z^2)$

- Power corrections very small up to $p_T = 30 50 \text{ GeV} (\tau = 0.1 0.2)$ Leading-power (singular) $\mathcal{O}(\alpha_s^3)$ are known analytically
 - More important than even $\mathcal{O}(\alpha_s, \alpha_s^2)$ power corrections (nonsingular)
 - Full V+1-jet NNLO₁ (only) adds $\mathcal{O}(\alpha_s^3)$ power corrections (nonsingular)
 - Most likely only relevant for p_T ≥ 50 GeV or observables/cuts that are intrinsically sensitive to power corrections

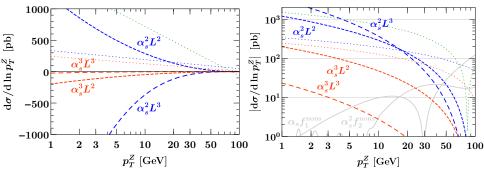
Contributions from Individual Log Terms.



Fixed-order convergence deteriorates below $p_T < 10 \, {
m GeV} \, (au < 0.01)$

- Natural α_s suppression gets spoiled by additional logs
- Fixed-order uncertainties from scale variations will be unreliable (they cannot know about additional powers of logs)
- Logarithmic terms are oscillating with large coefficients
- Resummation reorganizes pert. series and makes it well-behaved again (it knows and takes into account relations between log coefficients)

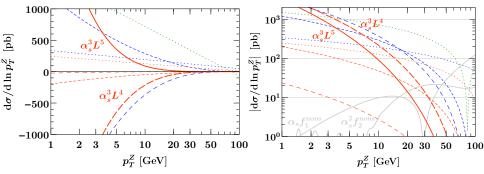
Contributions from Individual Log Terms.



Fixed-order convergence deteriorates below $p_T < 10\,{
m GeV}~(au < 0.01)$

- Natural α_s suppression gets spoiled by additional logs
- Fixed-order uncertainties from scale variations will be unreliable (they cannot know about additional powers of logs)
- Logarithmic terms are oscillating with large coefficients
- Resummation reorganizes pert. series and makes it well-behaved again (it knows and takes into account relations between log coefficients)

Contributions from Individual Log Terms.



Fixed-order convergence deteriorates below $p_T < 10 \ {
m GeV} \ (au < 0.01)$

- Natural α_s suppression gets spoiled by additional logs
- Fixed-order uncertainties from scale variations will be unreliable (they cannot know about additional powers of logs)
- Logarithmic terms are oscillating with large coefficients
- Resummation reorganizes pert. series and makes it well-behaved again (it knows and takes into account relations between log coefficients)

Frank Tackmann (DESY)

Basics of Resummation (in SCET).

< 67 →

Soft-Collinear Effective Theory (SCET).

SCET is the effective field theory (EFT) that arises from expanding full QCD in powers of τ at the Lagrangian and operator level

$$QCD = \underbrace{\text{SCET}^{(0)}}_{\text{leading-power}} + \underbrace{\text{SCET}^{(1)}}_{\text{next-to-leading power}} + \mathcal{O}(\tau^2)$$

By construction SCET reproduces the small- τ limit of full QCD. Hence, calculating the cross section with SCET⁽⁰⁾ we exactly get the leading-power result

$$\mathrm{d}\sigma^{(0)} = \langle \mathsf{SCET}^{(0)}
angle$$

- Holds to all orders in α_s
 - Can use SCET to perform resummation with EFT methods
- Also holds nonperturbatively
 - E.g. PDFs defined in QCD and SCET are the same (in both cases the power expansion being the usual twist expansion)
 - Can also define and study other nonperturbative operator matrix elements, e.g. can include hadronization through nonperturbative soft functions

< A >

Leading-power spectrum can be factorized into hard, collinear, and soft contributions

$$\frac{\mathrm{d}\sigma^{(0)}}{\mathrm{d}p_T \mathrm{d}Q \mathrm{d}Y} = H(Q,\mu) \times B(p_T, Qe^{\pm Y}, \mu, \nu)^2 \otimes S(p_T, \mu, \nu)$$
$$\ln^2 \frac{p_T}{Q} = 2\ln^2 \frac{Q}{\mu} + 2\ln \frac{p_T}{\mu} \ln \frac{\nu}{Q} + \ln \frac{p_T}{\mu} \ln \frac{\mu p_T}{\nu^2}$$

• All pieces are renormalized objects (similar to $\alpha_s(\mu)$ or PDFs)

- Their scale (μ and ν) dependence is governed by corresponding RGEs
- Scale dependence exactly cancels between different pieces
- All-order logarithmic structure of dσ⁽⁰⁾ is fully encoded in the scale dependence and therefore fully determined by the associated coupled system of RGEs
- Resummation follows from solving this coupled system of differential equations

< 🗗 >

Simplest Case: Multiplicative RGE (Hard Function).

$$\mu \frac{\mathrm{d}H(Q,\mu)}{\mathrm{d}\mu} = \gamma_H(Q,\mu) H(Q,\mu)$$

$$\Rightarrow \quad H(Q,\mu) = H(Q,\mu_H) \times \exp\left[\int_{\mu_H}^{\mu} \frac{\mathrm{d}\mu'}{\mu'} \gamma_H(Q,\mu')\right]$$

$$\equiv H(Q,\mu_H) \times U_H(\mu_H,\mu)$$

Resummation follows from setting $\mu_H = Q$ in the solution

• Boundary condition $H(Q, \mu_H = Q)$ is free of logarithms and admits fixed-order expansion

 $H(Q, \mu_H = Q) = 1 + lpha_s(Q) + \cdots$

All $\ln^n(Q/\mu)$ present in $H(Q,\mu)$ are resummed into $U_H(\mu_H = Q,\mu)$

 Anomalous dimension γ(Q, μ) determines the exponent and also admits a fixed-order expansion (plus β(α_s) to perform μ-integral)

$$\gamma_H(Q,\mu) = \ln rac{Q}{\mu} ig[1 + lpha_s(\mu) + \cdots ig] + ig[1 + lpha_s(\mu) + \cdots ig]$$

⇒ Double-log series fully given in terms of a few log-free FO series

Resummation Orders.

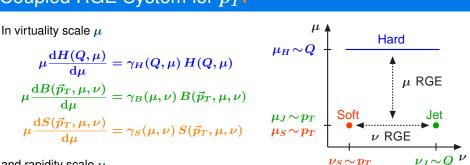
	Boundary conditions	Anomalous dimensions		FO matching
	(singular)	$\gamma_{H,B,S, u}$	$\Gamma_{ ext{cusp}},oldsymbol{eta}$	(nonsingular)
LL	1	-	1-loop	-
NLL	1	1-loop	2-loop	-
$NLL'+NLO_0$	$lpha_s$	1-loop	2-loop	$lpha_s$
NNLL+NLO ₀	$lpha_s$	2-loop	3-loop	$lpha_s$
NNLL'+NNLO ₀	$lpha_s^2$	2-loop	3-loop	$lpha_s^2$
$N^{3}LL+NNLO_{0}$	$lpha_s^2$	3-loop	4-loop	$lpha_s^2$
$N^{3}LL'+N^{3}LO_{0}$	$lpha_s^3$	3-loop	4-loop	$lpha_s^3$

Fixed-order expansion of boundary conditions and anomalous dimensions are the basic ingredients that determine the resummation order

- Provides a fundamental and unambiguous definition of the resummation order (or perturbative accuracy)
 - Since the anomalous dimensions determine the exponent, this is more general then counting logarithms in the solution. Instead, it defines the order directly at the level of the to-be-solved RGE system.
 - In particular, it does not rely on or require specifying a particular log scaling like α_sL ~ 1 in the final result.

Frank Tackmann (DESY)

Coupled RGE System for p_T .



and rapidity scale u

$$\begin{split} \nu \frac{\mathrm{d}B(\vec{p}_T, \mu, \nu)}{\mathrm{d}\nu} &= -\frac{1}{2} \int \mathrm{d}^2 \vec{k}_T \, \gamma_\nu(\vec{k}_T, \mu) \, B(\vec{p}_T - \vec{k}_T, \mu, \nu) \\ \nu \frac{\mathrm{d}S(\vec{p}_T, \mu, \nu)}{\mathrm{d}\nu} &= \int \mathrm{d}^2 \vec{k}_T \, \gamma_\nu(\vec{k}_T, \mu) \, S(\vec{p}_T - \vec{k}_T, \mu, \nu) \\ \mu \frac{\mathrm{d}}{\mathrm{d}\mu} \gamma_\nu(\vec{k}_T, \mu) &= \nu \frac{\mathrm{d}}{\mathrm{d}\nu} \gamma_S(\mu, \nu) \delta(\vec{k}_T) = -4\Gamma_{\mathrm{cusp}}[\alpha_s(\mu)] \delta(\vec{k}_T) \end{split}$$

plus evolution equations for α_s and PDFs

Together these encode again an exponential structure of the cross section (which is surprisingly nontrivial and not just a simple multipicative exponential)

Frank Tackmann (DESY)

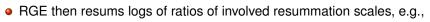
2018-05-23 11 / 23

• 🗗 •

Resummation Structure for p_T .

 $\begin{aligned} \frac{\mathrm{d}\sigma^{(0)}}{\mathrm{d}p_T} &= H(Q, \mu_H) \\ &\times B(p_T, \mu_B, \nu_B/Q)^2 \\ &\otimes S(p_T, \mu_S, \nu_S/p_T) \\ &\otimes U_{\mathrm{total}}(p_T; \mu_H, \mu_B, \mu_S, \nu_B, \nu_S) \end{aligned}$

 RG consistency (path independence) means that dependence on arbitrary final scales μ and ν exactly cancels



 $\ln^n(\mu_B/\mu_H), \quad \ln^n(\mu_S/\mu_H), \quad \ln^n(\nu_S/\nu_B)$

• Logarithms $\ln(p_T/Q)$ are resummed by canonical scale choices

 $\mu_H = Q$, $\nu_B = Q$, $\mu_B = p_T$, $\mu_S = \nu_S = p_T$

 $\mu_H \sim Q -$

 $\begin{array}{c|c} \mu_J \sim p_T \\ \mu_S \sim p_T \end{array} \begin{vmatrix} \text{Soft} & \\ \bullet & \\ \nu & \text{RGE} \end{vmatrix}$

 $\nu_S \sim p_T$

Hard

 μ RGE

Jet

 $\nu_I \sim Q^{\nu}$

- Varying them around their canonical values allows us to probe intrinsic resummation uncertainties
- Setting $\mu_H = \mu_B = \mu_S = \nu_B = \nu_S = \mu_{\rm FO}$ turns off all resummation

< 🗗 >

Some Remarks on Differences Between Approaches.

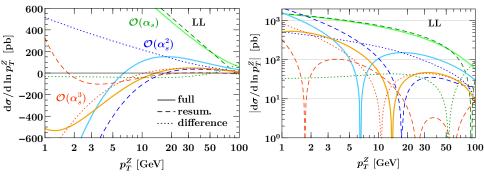
The logarithms in the cross section are always the same

(everybody is trying to calculate the same thing ...)

- SCET provides a convenient framework to formulate resummation in terms of RG running in an EFT and derive the appropriate RGE system
- Corresponding or equivalent evolution equations can be obtained directly by studying the soft-collinear limit of QCD
 - CSS formalism [Collins, Soper, Sterman '81-'85]

Once the RGE system is specified to a given resummation order

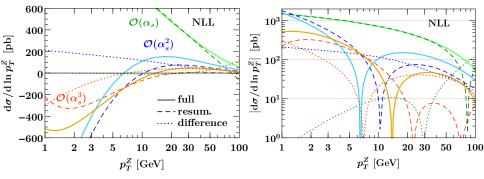
- One has to solve it and choose appropriate boundary scales
- This is where differences between various approaches enter
 - How evolution is performed (exact, approximate, numerical)
 - Precise choices of which logs are actually resummed
 - How resummation is turned off (endpoint of the evolution)
 - Treatment of power corrections (matching to full fixed order)
 - Treatment of nonperturbative corrections
 - Estimation of uncertainties
- ⇒ Most of these require another talk ...



Expand resummation to given α_s order to allow for well-defined comparison

- Orders as defined before (no further approximations or choices needed)
- Resummation provides very fast convergence
 - ▶ NLL(') is better than NLO₁ (i.e. closer to NNLO₁) for $p_T < 5(10) \, {
 m GeV}$
 - NNLL essentially reproduces NNLO₁ for $p_T < 30 \, {
 m GeV}$
- ⇒ Even if fixed-order expansion works, resummation provides better perturbative approximation as long as power expansion applies

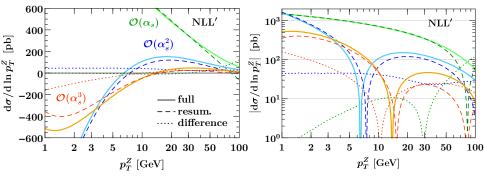
Frank Tackmann (DESY)



Expand resummation to given α_s order to allow for well-defined comparison

- Orders as defined before (no further approximations or choices needed)
- Resummation provides very fast convergence
 - ▶ NLL(') is better than NLO₁ (i.e. closer to NNLO₁) for $p_T < 5(10) \, {
 m GeV}$
 - NNLL essentially reproduces NNLO₁ for $p_T < 30 \, {
 m GeV}$
- ⇒ Even if fixed-order expansion works, resummation provides better perturbative approximation as long as power expansion applies

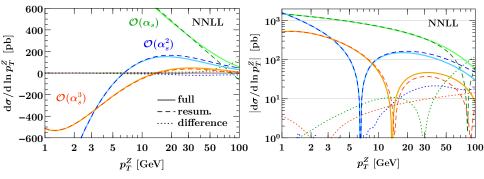
Frank Tackmann (DESY)



Expand resummation to given α_s order to allow for well-defined comparison

- Orders as defined before (no further approximations or choices needed)
- Resummation provides very fast convergence
 - ▶ NLL(') is better than NLO₁ (i.e. closer to NNLO₁) for $p_T < 5(10) \, {
 m GeV}$
 - NNLL essentially reproduces NNLO₁ for $p_T < 30 \, {
 m GeV}$
- ⇒ Even if fixed-order expansion works, resummation provides better perturbative approximation as long as power expansion applies

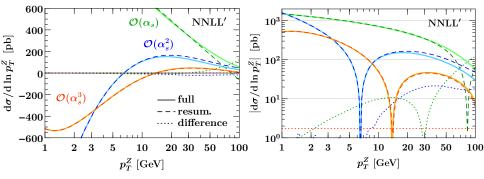
Frank Tackmann (DESY)



Expand resummation to given α_s order to allow for well-defined comparison

- Orders as defined before (no further approximations or choices needed)
- Resummation provides very fast convergence
 - ▶ NLL(') is better than NLO₁ (i.e. closer to NNLO₁) for $p_T < 5(10) \, {
 m GeV}$
 - NNLL essentially reproduces NNLO₁ for $p_T < 30 \, {
 m GeV}$
- ⇒ Even if fixed-order expansion works, resummation provides better perturbative approximation as long as power expansion applies

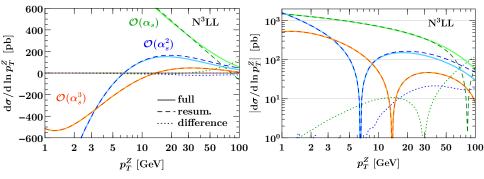
Frank Tackmann (DESY)



Expand resummation to given α_s order to allow for well-defined comparison

- Orders as defined before (no further approximations or choices needed)
- Resummation provides very fast convergence
 - ▶ NLL(') is better than NLO₁ (i.e. closer to NNLO₁) for $p_T < 5(10) \, {
 m GeV}$
 - NNLL essentially reproduces NNLO₁ for $p_T < 30 \, {
 m GeV}$
- ⇒ Even if fixed-order expansion works, resummation provides better perturbative approximation as long as power expansion applies

Frank Tackmann (DESY)



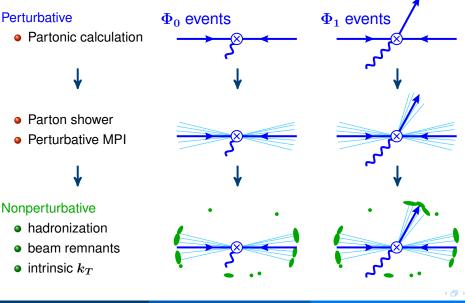
Expand resummation to given α_s order to allow for well-defined comparison

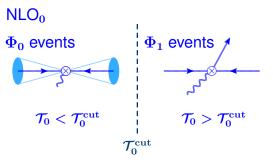
- Orders as defined before (no further approximations or choices needed)
- Resummation provides very fast convergence
 - ▶ NLL(') is better than NLO₁ (i.e. closer to NNLO₁) for $p_T < 5(10) \, {
 m GeV}$
 - NNLL essentially reproduces NNLO₁ for $p_T < 30 \, {
 m GeV}$
- ⇒ Even if fixed-order expansion works, resummation provides better perturbative approximation as long as power expansion applies

News from GENEVA.

< 67 ►

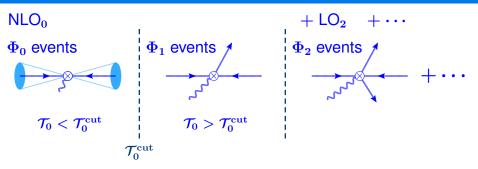
MC Generators in a Nut Shell.





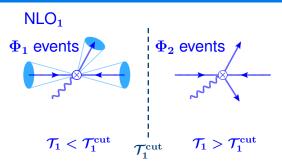
- Emissions above (below) $\mathcal{T}_0^{\text{cut}}$ are resolved (unresolved)
 - Partons represent sum over any number of unresolved emissions
 - Want to lower $\mathcal{T}_0^{\text{cut}}$ to resolve more with partonic calculation

< 67 →



- Emissions above (below) $\mathcal{T}_0^{\text{cut}}$ are resolved (unresolved)
 - Partons represent sum over any number of unresolved emissions
 - Want to lower $\mathcal{T}_0^{\text{cut}}$ to resolve more with partonic calculation
- (N)LO+PS merging patches together different (N)LO calculations

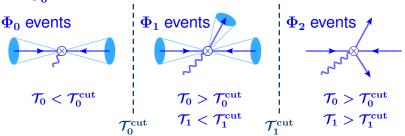
< 行り)



- Emissions above (below) $\mathcal{T}_0^{\text{cut}}$ are resolved (unresolved)
 - Partons represent sum over any number of unresolved emissions
 - Want to lower T₀^{cut} to resolve more with partonic calculation
- (N)LO+PS merging patches together different (N)LO calculations

< 47 >

NNLO₀

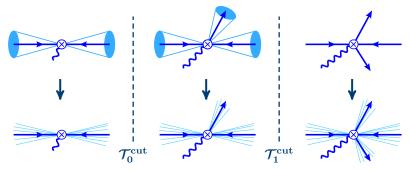


• Emissions above (below) $\mathcal{T}_0^{\text{cut}}$ are resolved (unresolved)

- Partons represent sum over any number of unresolved emissions
- Want to lower $\mathcal{T}_0^{\mathrm{cut}}$ to resolve more with partonic calculation
- (N)LO+PS merging patches together different (N)LO calculations
- NNLO+PS matching: Contains NLO₁ down to small \mathcal{T}_0
 - POWHEG NNLOPS: use MINLO' to extend POWHEG NLO₁ to small T₀^{cut}
 - GENEVA: use 0-jettiness subtractions and higher-order resummation

< 67 →

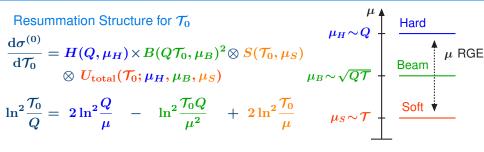
Parton Shower.



Parton shower fills in emissions below $\mathcal{T}_N^{\mathrm{cut}}$

- Provides unresolved emissions that have been integrated over and projected onto partons in partonic calculation
 - Highest partonic multiplicity is showered inclusively (corresponding to $T_2^{\text{cut}} = \infty$ here)
- MPI is done entirely by shower MCs
 - Currently not included in any partonic calculation
 - Would require to include double-parton scattering

GENEVA Uses N-Jettiness as Resolution Variable.



• RGE resums logarithms of ratios of scales $\ln^n(\mu_B^2/\mu_H^2), \quad \ln^n(\mu_S^2/\mu_B^2), \quad \ln^n(\mu_S/\mu_H)$

• Logarithms $\ln^n(\mathcal{T}_0/Q)$ are resummed by canonical scale choices

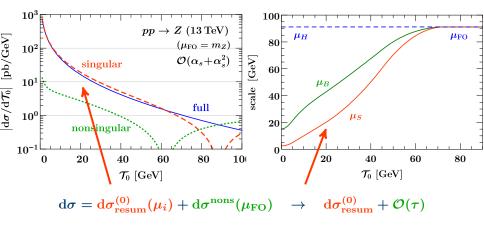
$$\mu_H = Q, \qquad \mu_B = \sqrt{\mathcal{T}_0 Q}, \qquad \mu_S = \mathcal{T}_0$$

Currently GENEVA includes resummation at

- ▶ NNLL'+NNLO₀ for T₀
- NLL+NLO₁ for \mathcal{T}_1

< 67 →

Matching to Fixed Order with Profile Scales.



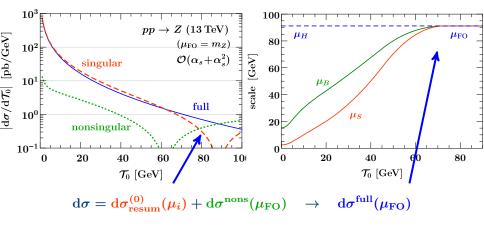
Canonical region

- Use canonical scales to resum correct logarithms of $\ln(\mathcal{T}/m_Z)$
- Nonsingular are power suppressed

Frank Tackmann (DESY)

< 47 >

Matching to Fixed Order with Profile Scales.

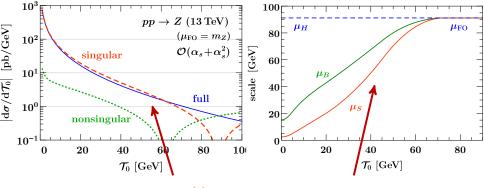


Fixed-order region

- Power expansion breaks down, resummation must be turned off
- Resummed result reduces to FO singular (requires (N)NLL' order)

 $\mu_i
ightarrow \mu_H = \mu_{
m FO} \quad \Rightarrow \quad {
m d}\sigma^{(0)}_{
m resum}(\mu_i
ightarrow \mu_{
m FO})
ightarrow {
m d}\sigma^{
m sing}(\mu_{
m FO})$

Matching to Fixed Order with Profile Scales.



$$\mathrm{d}\sigma = \mathrm{d}\sigma^{(0)}_{\mathrm{resum}}(\mu_i) + \mathrm{d}\sigma^{\mathrm{nons}}(\mu_{\mathrm{FO}})$$

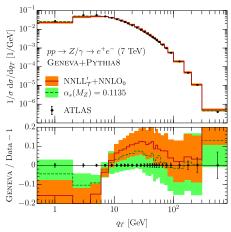
Transition region

- Matching/transition is implemented through a scale choice
 - Associated ambiguity manifestly reduces at higher orders
 - Associated uncertainties can be estimated through profile scale variations

W and Z Production in GENEVA .

Z production

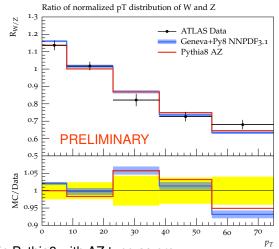
- Lower α_s(m_Z) has nontrivial effect and gives much better description
- Consistent with the fact that all extractions from e^+e^- using similarly high resummation precision yield same low values
- Effect should drop out of W/Z ratio
 - Will use default α_s(m_Z) = 0.118 in the following



W production

- Recently completed implementation of W production in GENEVA
 - Same level of perturbative accuracy as for Z
 - Disclaimer: Everything is preliminary

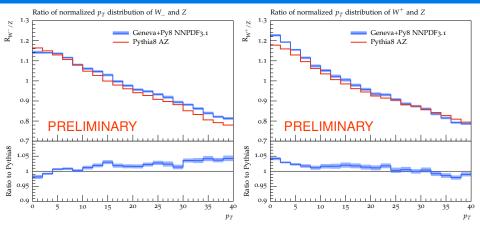
W/Z Ratio.



- Using plain Pythia8 with AZ tune as proxy
 - Equivalent to what was used in analogous plots in ATLAS m_W paper
- GENEVA bands are from correlating profile scale variations for W and Z
 - For illustration/information only, not the final word on uncertainty

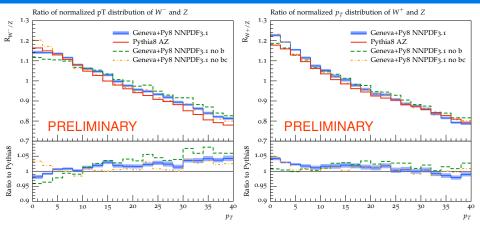
< 🗗 >

W[±]/Z Ratio.



- Quite good agreement with Pythia8 AZ
- Disclaimers:
 - We keep selection cuts, while the equivalent plots from ATLAS have no selection cuts, which is the reason for the overall different slope
 - Need to check with different PDFs and $\alpha_s(m_Z)$

W[±]/Z Ratio.



- Quite good agreement with Pythia8 AZ
- Disclaimers:
 - We keep selection cuts, while the equivalent plots from ATLAS have no selection cuts, which is the reason for the overall different slope
 - Need to check with different PDFs and $\alpha_s(m_Z)$

Thanks for staying with me ...

... and sorry for running over time

< 67 >