A measurement method for the complete set of angular coefficients for the W boson at the LHC

Physics motivation
Few remarks on the choice of the frame
Measurements so far: Tevatron, LHC
A path to measure complete set of coefficients.

Bonus slides: Mustraal frame

What are $A_{i}^{\prime} \mathrm{S}$

In the rest frame of the \mathbf{W} or Z we can decompose differential cross-section in the base of orthonormal polynomials of the at most second order.

$$
\begin{array}{ll}
\frac{\mathrm{d}^{4} \sigma}{\mathrm{~d}\left(p_{T}^{W}\right)^{2} \mathrm{~d} y \mathrm{~d} \cos \theta_{C S} \mathrm{~d} \phi_{C S}}= & \frac{3}{16 \pi} \frac{\mathrm{~d}^{2} \sigma^{T O T}}{\mathrm{~d}\left(p_{T}^{W}\right)^{2} \mathrm{~d} y}\left[\left(1+\cos ^{2} \theta_{C S}\right)+\right. \\
& +\frac{1}{2} A_{0}\left(1-3 \cos ^{2} \theta_{C S}\right)-Q A_{1} \sin 2 \theta_{C S} \cos \phi_{C S}+ \\
& +\frac{1}{2} A_{2} \sin ^{2} \theta_{C S} \cos 2 \phi_{C S}+A_{3} \sin \theta_{C S} \cos \phi_{C S}+ \\
& -Q A_{4} \cos \theta_{C S}+A_{5} \sin ^{2} \theta_{C S} \sin 2 \phi_{C S}+ \\
& \left.-Q A_{6} \sin 2 \theta_{C S} \sin \phi_{C S}+A_{7} \sin \theta_{C S} \sin \phi_{C S}\right]
\end{array}
$$

Where A_{i} 's are functions of $\left(p_{T}, Y, m_{\| l}\right)$.
Carry information on the QCD dynamics of the production process.

Why interesting to measure A_{i} 's

- Probe the effect of QCD corrections on the spin structure of W production. The m_{W} precise measurements using m_{T} or p_{T} is sensitive to it!
- Focus point of this workshop
- Fraction of left-, right- and longitudinaly polarised W's. Expecting dominantly left-handed at high p_{T} and increasing longitudinal fraction at high p_{T}.
- Measuring P-odd and T-odd coefficients may play an important role in revealing direct CP violation effects in W production and decay.
- Knowledge on angular distributions can be used to test new models.

Choice of the polarisation frame

The rest frame of \mathbf{W} or \mathbf{Z} boson: the \mathbf{z}-axis is defined as
Helicity axis (HX): outgoing Z or W direction in the lab frame (f_{L}, f_{R}, f_{0})
Collins-Soper axis (CS): average of the two beam directions in the W / Z rest frame (A_{i} ' s)
Gottfried-Jackson axis (GJ): direction of one or the other beam in the W/Z rest frame Perpendicular helicity axis (PX): perpendicular to CS

BONUS slides: Mustraal frame as a much more elaborated version of GJ frame.

A bit of history: Tevatron (2000-2003)

Decomposition in Collins-Soper frame

$$
\begin{aligned}
& \frac{\mathrm{d}^{4} \sigma}{\mathrm{~d}\left(p_{T}^{W}\right)^{2} \mathrm{~d} y \mathrm{~d} \cos \theta_{C S} \mathrm{~d} \phi_{C S}}= \\
& \frac{3}{16 \pi} \frac{\mathrm{~d}^{2} \sigma^{T O T}}{\mathrm{~d}\left(p_{T}^{W}\right)^{2} \mathrm{~d} y}\left[\left(1+\cos ^{2} \theta_{C S}\right)+\right. \\
& +\frac{1}{2} A_{0}\left(1-3 \cos ^{2} \theta_{C S}\right)-Q A_{1} \sin 2 \theta_{C S} \cos \phi_{C S}+ \\
& +\frac{1}{2} A_{2} \sin ^{2} \theta_{C S} \cos 2 \phi_{C S}+A_{3} \sin \theta_{C S} \cos \phi_{C S}+ \\
& -Q A_{4} \cos \theta_{C S}+A_{5} \sin ^{2} \theta_{C S} \sin 2 \phi_{C S}+ \\
& \left.-Q A_{6} \sin 2 \theta_{C S} \sin \phi_{C S}+A_{7} \sin \theta_{C S} \sin \phi_{C S}\right],
\end{aligned}
$$

$\underline{\text { Polar angle measurement: sensitive to } \mathbf{A}_{\underline{0}} \mathbf{A}_{4}, ~}$

$$
\begin{aligned}
& \frac{\mathrm{d} \sigma}{\mathrm{~d} \cos \theta_{C S}} \propto\left(1-Q \alpha_{1} \cos \theta_{C S}+\alpha_{2} \cos ^{2} \theta_{C S}\right), \\
& \alpha_{1}=\frac{2 A_{4}}{2+A_{0}}, \quad \alpha_{2}=\frac{2-3 A_{0}}{2+A_{0}}
\end{aligned}
$$

CDF Collaboration, hep-ex/0311050 DO Collaboration, hep-ex/0009034

FIG. 2: Theoretical NLO-QCD calculation of α_{2} and α_{1} vs. p_{T}^{W}. The limit $p_{T}^{W} \rightarrow 0 \mathrm{GeV} / c$ is the Quark Parton Model, for which $\alpha_{2}=1$ and $\alpha_{1}=2$

Due to complexity of solving equation for neutrino momenta and two-fold solution for sign of $\cos \theta$, the sensitivity of m_{T} to α_{2} is used insteadfor measurement.
The sensitivity to α_{1} is residual only, predicted from MC and accounted for in the systematics.

A bit of history: Tevatron (2000-2003)

Example of sensitivity

$p_{T}^{W}[\mathrm{GeV} / c]$	$\alpha_{2}(\mathrm{CDF}$ combined)	α_{2} (theory)
5.9	1.07 ± 0.04 (stat) ± 0.03 (syst)	0.98
13.9	1.18 ± 0.10 (stat) ± 0.06 (syst)	0.89
29.7	0.70 ± 0.23 (stat) ± 0.07 (syst)	0.61
55.3	-0.05 ± 0.29 (stat) ± 0.21 (syst)	0.23

Experimental information used: $\mathrm{m}_{\mathrm{T}}{ }^{\mathrm{W}}$ and $\mathrm{p}_{\mathrm{T}}{ }^{\mathrm{w}}$

CDF Collaboration, hep-ex/0311050 DO Collaboration, hep-ex/0009034

Measurement

1% uncertainty on α_{2} corresponds to 10 MeV shift in m_{w}
L. Cerrito, PhD thesis 2002

Raises already question of the TH uncertainty on either α_{i} or A_{i} and ther impact on m_{w}

A bit of history: Tevatron (2006)

Theory predictions

Calculated using moments method and DYRAD MC (NLO QCD)
A_{4} decreases with p_{T} increasing $A_{0}-A_{2}$ not equal due to gluon loops contrib. (Lam-Tung relation), consistenly $\mathrm{A}_{0}>\mathrm{A}_{\mathbf{2}}$
J. Strologas and S. Errede, Phys. Rev D73 (2006) 052001 CDF Collaboration, Phys. Rev D73 (2006) 052002
J. Strogolas, PhD Thesis, 2002

- If the W is produced with no p_{T}, then all coefficients but A_{4} are zero.
- If only valence quark contributed to the W^{-+}production, the A_{4} would be $=2$ (pure V-A coupling) and angular distribution of lepton from \mathbf{W}^{-+} would be $\sim(1 \pm \cos \theta)^{2}$,
- The A_{5}, A_{6}, A_{7} are non-zero only if gluon loops are present, so represent $\alpha_{s}{ }^{2}$ corrections.

Calculated analytically for W+j at NLO QCD.
E. Mirkes, Nucl. Phys. B387 (1992) 3.
E. Mirkes et al. Phys. Rev. D50(1994) 5692.

A bit of history: Tevatron (2006)

$\mathbf{q}_{\mathrm{T}}=\mathbf{W}$ tranverse momentum in LAB frame

$$
\begin{aligned}
& p_{z}^{\nu}=\frac{1}{\left(2 p_{T}^{l}\right)^{2}}\left(A p_{z}^{l} \pm E^{l} \sqrt{A^{2}-4\left(p_{T}^{l}\right)^{2}\left(p_{T}^{\nu}\right)^{2}}\right) \\
& A=M_{W}^{2}+q_{T}^{2}-\left(p_{T}^{l}\right)^{2}-\left(p_{T}^{\nu}\right)^{2}
\end{aligned}
$$

J. Strologas and S. Errede, Phys. Rev D73 (2006) 052001 CDF Collaboration, Phys. Rev D73 (2006) 052002
J. Strogolas, PhD Thesis, 2002

Two solutions corespond to the same value of ϕ but opposite sign of $\cos \theta$

Use M_{w} PDG for solving equation, if no solution possible event rejected.
Azimuthal angle measurement: sensitive to $\mathrm{A}_{2}, \mathrm{~A}_{3}$

Fold analytical templates with acceptance factors $f_{i}(i=0-7)$ of the fiducial phase-space derived from MC. Then fit folded templates to the reco data.

$$
\begin{aligned}
& \frac{d \sigma}{d q_{T}^{2} d \phi}=C^{\prime}\left(1+\beta_{1} \cos \phi+\beta_{2} \cos 2 \phi+\beta_{3} \sin \phi+\beta_{4} \sin 2 \phi\right) \\
& C^{\prime}=\frac{1}{2 \pi} \frac{d \sigma}{d q_{T}^{2}}, \quad \beta_{1}=\frac{3 \pi}{16} A_{3} \quad \beta_{2}=\frac{A_{2}}{4}, \quad \beta_{3}=\frac{3 \pi}{16} A_{7}, \quad \beta_{4}=\frac{A_{5}}{2} .
\end{aligned}
$$

A bit of history: Tevatron (2006)

Theory predictions

Calculated using moments method and DYRAD MC (NLO QCD)
A_{4} decreases with p_{T} increasing
$A_{0}-A_{2}$ not equal due to gluon loops contrib. (Lam-Tung relation broken), consistenly $\mathrm{A}_{0}>\mathrm{A}_{2}$
J. Strologas and S. Errede, Phys. Rev D73 (2006) 052001 CDF Collaboration, Phys. Rev D73 (2006) 052002
J. Strogolas, PhD Thesis, 2002

For the first time measurement of $\mathrm{A}_{\underline{2}} \underline{A_{3}}$ sensitive to azimuthal angle ϕ

FIG. 33. Measured A_{2} and A_{3} using the combination of electron and muon measurements. The total (outer) and statistical (inner) uncertainties are shown along with the standard model 1loop prediction up to order α_{s}^{2} (dashed line).

pp collisions at LHC

Only quarks are valence, both quarks and anti-quarks populate sea. Angular coefficients for \mathbf{W}^{+}and \mathbf{W}^{-}are not related by CP symmetry.

Low $\mathrm{p}_{\mathrm{T}}{ }^{\mathrm{w}}$ picture
At LHC, quarks carry generally larger fraction of the momentum. This causes \mathbf{W} to be boosted in the direction of the initial quark. In the massles quark approximation, quark must be left-handed, as results W bosons at large y^{W} are purely left-handed.
At central rapidity, increasing probability that antiquark carries larger momentum, the helicity state of W becomes mixture of left- and righthanded.

High $\mathrm{p}_{\underline{T}}{ }^{\mathrm{w}}$ picture
More complicated production mechanism. Polarisation in longitudinal state is possible. Left-handed W dominating at high p_{T}.

Measurement done by ATLAS and CMS @ 7 TeV, used helicity frame

ATLAS @ 7 TeV (2012)

ATLAS Collaboration, Eur. Phys. J. C72 (2012) 2001
Used helicity frame; measured helicity fractions: f_{0}, f_{L}, f_{R}

$$
\begin{aligned}
& \frac{1}{\sigma} \frac{d \sigma}{d \cos \theta_{3 \mathrm{D}}}=\frac{3}{8}\left[\left(1+\cos ^{2} \theta_{3 \mathrm{D}}\right)+A_{0} \frac{1}{2}\left(1-3 \cos ^{2} \theta_{3 \mathrm{D}}\right)+A_{4} \cos \theta_{3 \mathrm{D}}\right] . \\
& \frac{1}{\sigma} \frac{d \sigma}{d \cos \theta_{3 \mathrm{D}}}=\frac{3}{8} f_{\mathrm{L}}\left(1 \mp \cos \theta_{3 \mathrm{D}}\right)^{2}+\frac{3}{8} f_{\mathrm{R}}\left(1 \pm \cos \theta_{3 \mathrm{D}}\right)^{2}+\frac{3}{4} f_{0} \sin ^{2} \theta_{3 \mathrm{D}} \\
& f_{\mathrm{L}}\left(y_{W}, p_{\mathrm{T}}^{W}\right)=\frac{1}{4}\left(2-A_{0}\left(y_{W}, p_{\mathrm{T}}^{W}\right) \mp A_{4}\left(y_{W}, p_{\mathrm{T}}^{W}\right)\right) \\
& f_{\mathrm{R}}\left(y_{W}, p_{\mathrm{T}}^{W}\right)=\frac{1}{4}\left(2-A_{0}\left(y_{W}, p_{\mathrm{T}}^{W}\right) \pm A_{4}\left(y_{W}, p_{\mathrm{T}}^{W}\right)\right) \\
& f_{0}\left(y_{W}, p_{\mathrm{T}}^{W}\right)=\frac{1}{2} A_{0}\left(y_{W}, p_{\mathrm{T}}^{W}\right) \\
& f_{\mathrm{L}}-f_{\mathrm{R}}
\end{aligned}=\mp \frac{A_{4}}{2} . \quad \begin{aligned}
& \mathbf{f}_{0} \text { expected to vanish at } \mathbf{p}_{\mathrm{T}}{ }^{\mathbf{w}=\mathbf{0}} \\
& \text { and } \mathbf{p}_{\mathrm{T}}{ }^{\mathbf{w}}=\text { infinity }
\end{aligned}
$$

Experimental technique:

to avoid complexity of solving neuturino

 equation used „transverse helicity" angle $\theta_{2 D}$$$
\cos \theta_{2 \mathrm{D}}=\frac{\vec{p}_{\mathrm{T}}^{\ell_{*}^{*}} \cdot \vec{p}_{\mathrm{T}}^{W}}{\left|\vec{p}_{\mathrm{T}}^{\ell_{*}}\right|\left|\vec{p}_{\mathrm{T}}^{W}\right|},
$$

transverse W momenta, transverse W rest frame

ATLAS @ 7 TeV (2012)

Measurement in e and μ channels. Created f_{L}, f_{k}, f_{0} templates from MC. Fold templates into fiducial region. Fit of templates to the data. Extracted polarization fractions.

Measurement performed in two p_{T} bins: $\mathbf{3 5 - 5 0 ~ G e V , ~ > ~} 50 \mathrm{GeV}$

CMS @ 7 TeV (2011)

Focus on $\mathrm{p}_{\mathrm{T}}{ }^{\mathrm{w}}>50 \mathrm{GeV}$

Define lepton projection variable L_{p} and corresponding polar angle θ^{*}

$$
L_{P}=\frac{\vec{p}_{T}(\ell) \cdot \vec{p}_{T}(W)}{\left|\vec{p}_{T}(W)\right|^{2}} \quad \cos \theta^{*}=2\left(L_{P}-\frac{1}{2}\right)
$$

Measurement in e and μ channels. Fit templates to the data. Extract f_{L}, f_{R}, f_{0} fractions.

ATLAS @ 7 TeV (2012)

ATLAS Collaboration, Eur. Phys. J. C72 (2012) 2001

	$f_{\mathrm{L}}-f_{\mathrm{R}}(\%)$	
	$35<p_{\mathrm{T}}^{W}<50 \mathrm{GeV}$	$p_{\mathrm{T}}^{W}>50 \mathrm{GeV}$
Data	$23.8 \pm 2.0 \pm 3.4$	$25.2 \pm 1.7 \pm 3.0$
MC@NLO	27.1 ± 0.7	26.2 ± 0.5
POWHEG	19.9 ± 1.0	21.2 ± 0.8

$f_{0}(\%)$	
$35<p_{\mathrm{T}}^{W}<50 \mathrm{GeV}$	$p_{\mathrm{T}}^{W}>50 \mathrm{GeV}$
$21.9 \pm 3.3 \pm 13.4$	$12.7 \pm 3.0 \pm 10.8$
17.9 ± 1.2	21.0 ± 1.0
22.9 ± 1.0	19.4 ± 0.8

Fig. 9 Measured values of f_{0} and $f_{\mathrm{L}}-f_{\mathrm{R}}$ after corrections (Table 11), within acceptance cuts, for $35<p_{\mathrm{T}}^{W}<50 \mathrm{GeV}$ (left) and $p_{\mathrm{T}}^{W}>50 \mathrm{GeV}$ (right), compared with the predictions of MC@NLO and powheg. The ellipses around the data points correspond to one standard deviation.

CMS @ 7 TeV (2011)

CMS Collaboration, Phys. Rev. Lett. 107 (2011) 021802

CMS measurement: The muon fit result yields the most precise measurement: $\left(f_{L}-f_{R}\right)^{-}=0.240 \pm 0.036$ (stat) \pm 0.031 (syst) and $f_{0}^{-}=0.183 \pm 0.087$ (stat) ± 0.123 (syst) for negatively charged W bosons and $\left(f_{L}-f_{R}\right)^{+}=$ 0.310 ± 0.036 (stat) ± 0.017 (syst) and $\quad f_{0}^{+}=0.171 \pm$ $0.085($ stat $) \pm 0.099($ syst) for positively charged W bosons.
green - stat error

ATLAS measurement: f_{0}	$=0.127 \pm 0.030 \pm 0.108$
$\left(p_{T}>50 \mathrm{GeV}\right)$	$f_{L}-f_{R}=0.252 \pm 0.017 \pm 0.030$

Both measurements consistent.
Confirm expected non-zero fraction of longitudinal polarisation (helicity frame).

A path to measure complete set of A_{i} 's

ERW, Z. Was, arXiv: 1609.02536

1) Solve system for neutrino $p_{z}{ }^{v}$ momenta. If two solutions possible use randomly chosen one. Then construct rest-frame of the \mathbf{W} boson.
2) Build P_{i} polynomial templates using unweighted MC events. For unweighting use moments method to estimate A_{i}^{\prime} 's in MC. Fold into fiducial phase-space.
3) Fit to the data and extract complete set of A_{i} 's coefficients. Measurement will give $A_{i}^{\prime} s$ in the full phase-space.

Much more elaborated version of (2)-(3) was used for measurement of A_{i} 's in Z->ll events, published by ATLAS, JHEP 08 (2016) 159.

η

η

Fiducial phase-space:

$$
\begin{aligned}
& \mathrm{p}_{\mathrm{T}}^{\prime}>25 \mathrm{GeV},|\eta|<2.5 \\
& \mathrm{p}_{\mathrm{T}}^{v}>25 \mathrm{GeV} \\
& \mathrm{~m}_{\mathrm{T}}>40 \mathrm{GeV}
\end{aligned}
$$

Solving equation for neutrino momenta

Simple formulas:

$$
\begin{aligned}
p_{z}^{v} & =\frac{-b \pm \sqrt{b^{2}-4 a \cdot c}}{2 a} \\
a & =4 \cdot p_{z}^{\ell}-4 \cdot E^{\ell} \\
b & =4 \cdot\left(m_{W}^{2}+\left(p_{x}^{\ell}+p_{x}^{v}\right)^{2}+\left(p_{y}^{\ell}+p_{y}^{v}\right)^{2}-\left(E^{\ell}\right)^{2}+\left(p_{z}^{\ell}\right)^{2}-\left(p_{T}^{\ell}\right)^{2}\right) \cdot p_{z}^{\ell} \\
c & =\left(m_{W}^{2}+\left(p_{x}^{\ell}+p_{x}^{v}\right)^{2}+\left(p_{y}^{\ell}+p_{y}^{v}\right)^{2}-\left(E^{\ell}\right)^{2}+\left(p_{z}^{\ell}\right)^{2}-\left(p_{T}^{\ell}\right)^{2}\right)^{2}-4 \cdot\left(E^{\ell}\right)^{2} \cdot\left(p_{T}^{\ell}\right)^{2} . \\
p_{T}^{\ell} & =\sqrt{\left(p_{x}^{\ell}\right)^{2}+\left(p_{y}^{\ell}\right)^{2}} .
\end{aligned}
$$

For solving equation use $m_{w}=m_{w}{ }^{\text {PDG }}$, use $m_{v}=0$ constrain to calculate E_{v}

$$
E^{v}=\sqrt{\left(p_{x}^{v}\right)^{2}+\left(p_{y}^{v}\right)^{2}+\left(p_{z}^{v}\right)^{2}} .
$$

- Drop an event if no solution exists: $\quad \Delta=\left(b^{2}-4 a \cdot c\right)$
-- About 10\% lost at truth level (recoverable but needed?)
- Choose randomly one if two solutions. Each class of solutions, correct or wrong, separately preserves information about polarisation.

Collins-Soper frame

Use Collins-Soper fame, define z-axis orientation as one the charged lepton. Same formulas for $\cos \theta, \phi$ definitions as used for Z->II events, as we have solved already equation for neutrino momenta.

Red - 10\% of events lost due to no solution for neutrino momenta.
Mostly around $\cos \theta=0$ region
Random/Correct/Wrong solution used

Collins-Soper frame

ERW. Z. Was. arXiv: 1609.02536

Generated events, full phase-space

Random $p_{z}{ }^{v}$ solution, fiducial phase-space

Polynomial templates

Use unweighted MC events, weighted to different P_{i} shapes. For unweighting use A_{i}^{s} extracted with moments method.

$$
w t_{\Sigma A i P i}=\frac{1}{\sum_{i=0}^{i=8} A_{i} P_{i}(\cos \theta, \phi)}
$$

$$
\left\langle P_{i}(\cos \theta, \phi)\right\rangle=\frac{\int_{-1}^{1} d \cos \theta \int_{0}^{2 \pi} d \phi P_{i}(\cos \theta, \phi) d \sigma(\cos \theta, \phi)}{\int_{-1}^{1} d \cos \theta \int_{0}^{2 \pi} d \phi d \sigma(\cos \theta, \phi)}
$$

Full phase-space

Fiducial phase-space

P_{0} shape
P_{4} shape

Proof-of-concept: fit result

Closure test: generated and fit results for $\mathrm{A}_{i}^{\mathrm{s}}$

Same tests repeated using „only wrong" and „only correct" solutions for $p_{z}{ }^{\text { }}$ Confirmed that either case has the same sensitivity to the polarisation.

Predictions: MadGraph W+1j

Compared $\left|\mathrm{A}_{\mathrm{i}}\right|$ for $\mathrm{W}^{+}, \mathrm{W}^{-}$. With convention chosen, A_{3}, A_{4} are negative for W^{+}.

Summary

- Presented proof-of-concept that measurement of complete set of Ai's coefficients can be performed also in case of \mathbf{W} boson, despite twofold solution for neutrino momenta.
- Use randomly choosen solution for $p_{z}{ }^{v}$
- Follow strategy as for Z->ll case
- Limitation for precision and granularity in p_{T} binning of experimental measurement will come from resolution of $E_{T}{ }^{\text {miss }}$ reconstruction.

BONUS SLIDES: Mustraal frame

Mustraal frame

[18] F. A. Berends, R. Kleiss, and S. Jadach, Comput. Phys. Commun. 29 (1983) 185-200.
Mustraal: Monte Carlo for $\mathrm{e}^{+} \mathrm{e}^{-}->\mu^{+} \mu^{-}(\gamma)$

$$
\begin{array}{ll}
s=2 p_{+} \cdot p_{-}, & t=2 p_{+} \cdot q_{+}, \\
s^{\prime}=2 q_{+} \cdot q_{-}, & t^{\prime}=2 p_{+} \cdot q_{-} \\
-q_{-} & u^{\prime}=2 p_{-} \cdot q_{+}
\end{array}
$$

$$
\sigma_{\text {hard }}=\int \mathrm{d} \tau\left(X_{\mathrm{i}}+X_{\mathrm{f}}+X_{\mathrm{int}}\right),
$$

The explicit forms of the three terms in $\sigma_{\text {hard }}$ read:

$$
\begin{align*}
X_{\mathrm{i}}= & \frac{Q^{2} \alpha}{4 \pi^{2} s} \frac{1-\Delta}{k+k_{-}^{\prime}} s^{\prime 2}\left[\frac{\mathrm{~d} \sigma^{B}}{\mathrm{~d} \Omega}\left(s^{\prime}, t, u\right)+\frac{\mathrm{d} \sigma^{B}}{\mathrm{~d} \Omega}\left(s^{\prime}, t^{\prime}, u^{\prime}\right)\right], \tag{3.4}\\
X_{\mathrm{f}}= & \frac{Q^{\prime 2} \alpha}{4 \pi^{2} s} \frac{1-\Delta^{\prime}}{k_{+}^{\prime} k_{-}^{\prime}} s^{2}\left[\frac{\mathrm{~d} \sigma^{B}}{\mathrm{~d} \Omega}\left(s, t, u^{\prime}\right)+\frac{\mathrm{d} \sigma^{B}}{\mathrm{~d} \Omega}\left(s, t^{\prime}, u\right)\right], \tag{3,5}\\
X_{\mathrm{int}}= & \frac{Q Q^{\prime} \alpha}{4 \pi^{2} s} W^{\frac{\alpha^{2}}{2 s s^{\prime}}}\left[\left(u^{2}+u^{\prime 2}+t^{2}+t^{\prime 2}\right) \tilde{f}\left(s, s^{\prime}\right)+\frac{1}{2}\left(u^{2}+u^{\prime 2}-t^{2}-t^{\prime 2}\right) \tilde{g}\left(s, s^{\prime}\right)\right] \\
& +\frac{Q Q^{\prime} \alpha^{3}}{4 \pi^{2} s} \frac{\left(s-s^{\prime}\right) M \Gamma}{k_{+} k_{-}^{\prime} k_{+}^{\prime} k_{-}^{\prime} \epsilon_{\mu \nu \rho o} P_{+}^{4} p_{-}^{2} q_{+}^{9} q_{-}^{o}\left[\tilde{E}\left(s, s^{\prime}\right)\left(t^{2}-t^{\prime 2}\right)+\tilde{F}\left(s, s^{\prime}\right)\left(u^{2}-u^{\prime 2}\right)\right],} \tag{3.6}
\end{align*}
$$

Resulting optimal frame used to minimise higher order corrections from initial state radiation in $\mathrm{e}^{+} \mathrm{e}^{-->} \mathrm{Z} / \gamma^{*}->\mu \mu$ for algorithms of genuine EW corrections implementation in LEP time Monte Carlo's like Koral Z.

Mustraal frame for pp case

Rest-frame of outgoing leptons from V decay.
Proven in 80's (F.A.Berends at al. Comp. Phys. Com 29(1983) 185) that for qqbar->Z->II and single spin-1 emission in initial state (gluon or photon) matrix element can be presented as weighted sum of Borns.

Addapted (ERW\&ZW, Eur. Phys. J C76 (2016) 473) to pp case + added definition of azimuthal angle.

Restoring Born-like structure of the event :

- All A_{i} 's except A_{4} close to zero at low and high p_{T}.

Formulas of Mustraal frame

- The 4 -vectors of incoming partons and outgoing leptons are boosted into lepton-pair rest frame.
- To fix orientation of the event we use versor $\hat{x}_{l a b}$ of the laboratory reference frame. It is boosted into leptonpair rest frame as well. It will be used in definition of azimuthal angle ϕ, which has to extend over the range ($0,2 \pi$).
- We first calculate $\cos \theta_{1}$ (and $\cos \theta_{2}$) of the angle between the outgoing lepton and incoming quark (outgoing anti-lepton and incoming anti-quark) directions.

$$
\begin{equation*}
\cos \theta_{1}=\frac{\overrightarrow{\tau_{1}} \cdot \vec{p}_{1}}{\left|\vec{\tau}_{1}\right|\left|\vec{p}_{1}\right|}, \quad \cos \theta_{2}=\frac{\overrightarrow{\tau_{2}} \cdot \overrightarrow{p_{2}}}{\left|\vec{\tau}_{1}\right|\left|\overrightarrow{p_{2}}\right|} \tag{6}
\end{equation*}
$$

- The azimuthal angles ϕ_{1} and ϕ_{2} corresponding to θ_{1} and θ_{2} are defined as follows. We first define $e_{y_{1,2}}$ versors and with their help later $\phi_{1,2}$ as:

$$
\begin{gather*}
\vec{e}_{y}=\frac{x \overrightarrow{l a b} \times \vec{p}_{2}}{\left|\vec{e}_{y}\right|}, \quad \vec{e}_{x}=\frac{\vec{e}_{y} \times \vec{p}_{2}}{\left|\vec{e}_{x}\right|} \\
\cos \phi_{1}=\frac{\vec{e}_{x} \cdot \vec{\tau}_{1}}{\sqrt{\left(\vec{e}_{x} \cdot \vec{\tau}_{1}\right)^{2}+\left(\vec{e}_{y} \cdot \vec{\tau}_{1}\right)^{2}}} \quad \sin \phi_{1}=\frac{\vec{e}_{y} \cdot \vec{\tau}_{1}}{\sqrt{\left(\vec{e}_{x} \cdot \vec{\tau}_{1}\right)^{2}+\left(\vec{e}_{y} \cdot \vec{\tau}_{1}\right)^{2}}} \tag{7}
\end{gather*}
$$

and similarly for ϕ_{2} :

$$
\begin{gather*}
\vec{e}_{y}=\frac{x \overrightarrow{l a b} \times \vec{p}_{1}}{\left|\vec{e}_{y}\right|}, \quad \vec{e}_{x}=\frac{\vec{e}_{y} \times \vec{p}_{1}}{\left|\vec{e}_{x}\right|} \\
\cos \phi_{2}=\frac{\vec{e}_{x} \cdot \vec{\tau}_{2}}{\sqrt{\left(\vec{e}_{x} \cdot \vec{\tau}_{2}\right)^{2}+\left(\vec{e}_{y} \cdot \vec{\tau}_{2}\right)^{2}}} \quad \sin \phi_{2}=\frac{\overrightarrow{e_{y}} \cdot \vec{\tau}_{2}}{\sqrt{\left(\vec{e}_{x} \cdot \vec{\tau}_{2}\right)^{2}+\left(\vec{e}_{y} \cdot \vec{\tau}_{2}\right)^{2}}} . \tag{8}
\end{gather*}
$$

- Each event contributes with two Born-like kinematics configurations $\Theta_{1} \phi_{1},\left(\theta_{2} \phi_{2}\right)$, respectively with $w t_{1}$ (and $w t_{2}$) weights; $w t_{1}+w t_{2}=1$ where

$$
\begin{equation*}
w t_{1}=\frac{E_{p 1}^{2}\left(1+\cos ^{2} \theta_{1}\right)}{E_{p 1}^{2}\left(1+\cos ^{2} \theta_{1}\right)+E_{p 2}^{2}\left(1+\cos ^{2} \theta_{2}\right)}, \quad w t_{2}=\frac{E_{p 2}^{2}\left(1+\cos ^{2} \theta_{2}\right)}{E_{p 1}^{2}\left(1+\cos ^{2} \theta_{1}\right)+E_{p 2}^{2}\left(1+\cos ^{2} \theta_{2}\right)} . \tag{9}
\end{equation*}
$$

In the calculation of the weight, incoming partons energies $E_{p 1}, E_{p 2}$ in the rest frame of lepton pair are used, but not their couplings or flavours. That is also why, instead of $\sigma_{B}(s, \cos \theta)$ the simplification $\left(1+\cos ^{2} \theta\right)$ is used in Eq. (9). Dependence on the sign of $\cos \theta$ drops out ${ }^{3}$.

$A_{\mathrm{i}}^{\prime} \mathrm{s}$ in Mustraal frame

QCD NLO

$$
\mathrm{pp} \rightarrow \mathrm{~W}^{-} \mathrm{j}, \mathrm{~W}^{-} \rightarrow \tau^{-} v
$$

Powheg+MiNLO MC
——Collins-Soper frame
\ldots Mustraal frame

Only A_{4} coefficient significantly different from zero at low p_{T}. Frame suitable for factorising EW and QCD corrections.

$A_{\mathrm{i}}^{\prime} \mathrm{s}$ in Mustraal frame

ERW, Z. Was, arXiv: 1609.02536

qG -> W j

Non-zero values of A_{0} in Mustraal frame in $q G->W j$ events only.

$\mathrm{A}_{\mathrm{i}}^{\prime} \mathrm{s}$ in Mustraal frame

Compared $\left|A_{i}\right|$ for W^{+}, W^{-}. With convention chosen A_{3}, A_{4} are negative for W^{+}.

SPARES

The observed polarisation depends on the frame

For $\left|p_{\mathrm{L}}\right| \ll p_{\mathrm{T}}$, the CS and HX frames differ by a rotation of 90°

The observed polarisation depends on the frame

For $\left|p_{\mathrm{L}}\right| \ll p_{\mathrm{T}}$, the CS and HX frames differ by a rotation of 90°

Drell-Yan, W, Z polarizations

- polarization is always fully transverse...

$$
V=\gamma^{*}, Z, W
$$

Due to helicity conservation at the $q-\bar{q}-V\left(q-q^{*}-V\right)$ vertex, $J_{z}= \pm 1$ along the $q-q^{-}\left(q-q^{*}\right)$ scattering direction z

- ...but with respect to a subprocess-dependent quantization axis

In all these cases the $q-q-V$ lines are in the production plane (planar processes);
The CS, GJ, pp-HX and qg-HX axes only differ by a rotation in the production plane

