Parton distributions, nonperturbative functions, quark-mass effects in *W* mass measurements

Pavel Nadolsky

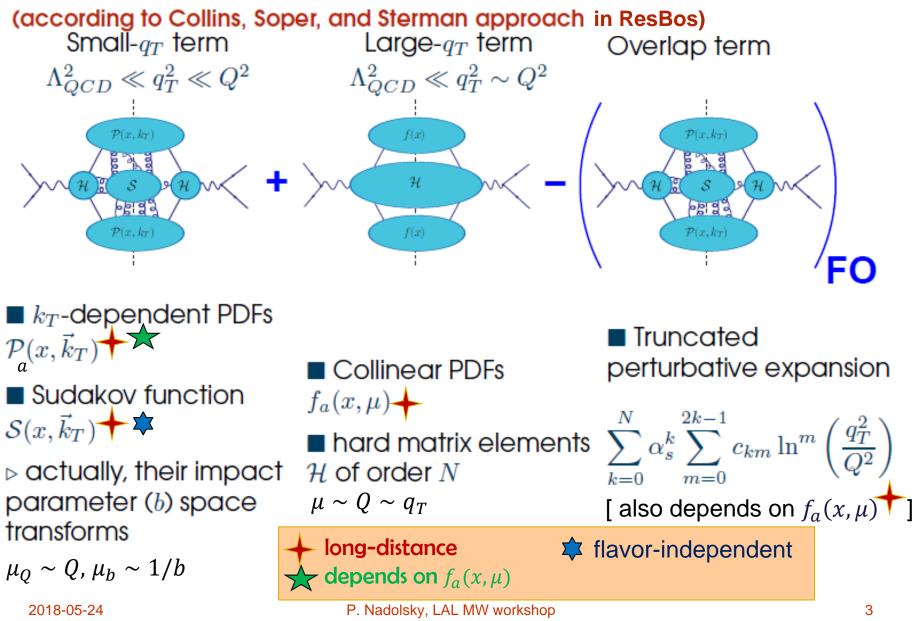
Southern Methodist University

Based on the work with C. Brock, A. Belyaev, S. Berge, S. Doyle, M. Guzzi, N. Kidonakis, A. Konychev, J. Gao, T. J. Hobbs, T.-J. Hou, G. Ladinsky, F. Olness, B. T. Wang, B. W. Wang, C.-P. Yuan

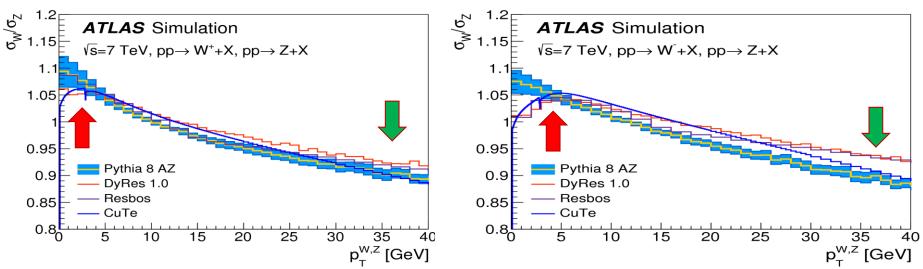
CTEQ-TEA group / ResBos developers

1. Parton distributions in TMD factorization for *W*, *Z* boson production

- ...introduce a systematic uncertainty of order $\delta M_W \gtrsim 10 \text{ MeV}$
- Two kinds:
 - a. $f_a(x, \mu)$ -- collinear PDFs [e.g., CT14 NNLO]
 - b. $\mathcal{P}_a(x, \vec{k}_T)$ and $\overline{\mathcal{P}}_a(x, \vec{b})$ -- transverse-momentum-dependent (TMD) or transverse-position-dependent PDFs
- $\overline{\mathcal{P}}_{a}(x, \vec{b})$ is related to $f_{a}(x, \mu)$ at $b^{2} \ll 1/\Lambda^{2}$, where $\Lambda \sim 1 \text{ GeV}$ $\overline{\mathcal{P}}_{a}(x, \vec{b}) = \int_{x}^{1} \frac{d\xi}{\xi} C_{a/a'} \left(\frac{x}{\xi}, \frac{b\mu_{b}}{2e^{-\gamma_{E}}}; \alpha_{s}(\mu_{b})\right) f_{a'}\left(x, \mu_{b} \sim \frac{1}{b}\right) + O(\Lambda^{2}b^{2})$


The power-suppressed terms of order $\Lambda^{2p}b^{2p}$ must be constrained by data just as the collinear PDFs $f_a(x, \mu)$

 \Rightarrow global analyses of q_T distributions (in the future, PDFs+ q_T distributions)


⇒ constraining $f_a(x, \mu)$ and $\overline{P}_a(x, \overline{b})$ at NNLO is a large coupled problem!

2018-05-24

QCD factorization as a function of q_T

Example: $\sigma(W^+/Z^0) \& \sigma(W^-/Z^0) \operatorname{vs.} p_T^{W,Z}$

Various flavor combinations of $f_a(x, \mu)$ and $\overline{\mathcal{P}}_a(x, \vec{b})$ enter in a range of QCD scales from 1 GeV to $\gtrsim M_{W,Z}$; do not cancel in some xsec ratios!

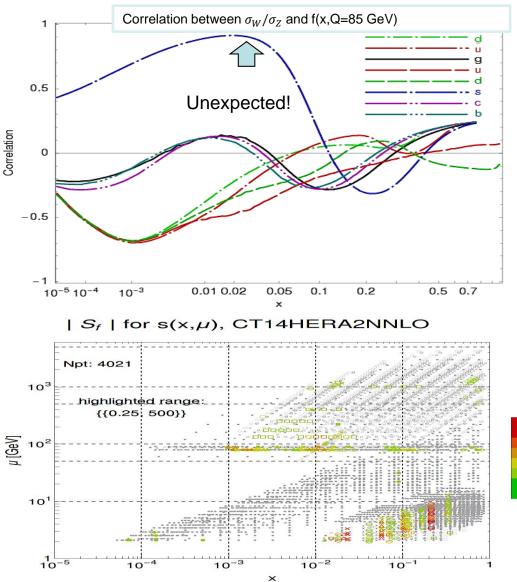
Parton luminosities as percentages of the total cross section:

 W^+ : $u\bar{d}$ (~70%), $c\bar{s}$ (20%), gq, ... Z^0 : $u\bar{u}$ (30%), $d\bar{d}$ (30%), $s\bar{s}(15\%)$, W^- : $d\bar{u}$ (60%), $s\bar{c}$ (25%), gq, ... $c\bar{c}(8\%)$, $b\bar{b}$ (5%)....

 q_{sea} and \bar{q}_{sea} dominate the PDF uncertainties; impossible to **guess** which ones Quark mass effects in *c*, *b* channels; included at NLO in ResBos 1

Statistical methods to identify the PDF dependence

1. PDF-driven correlations

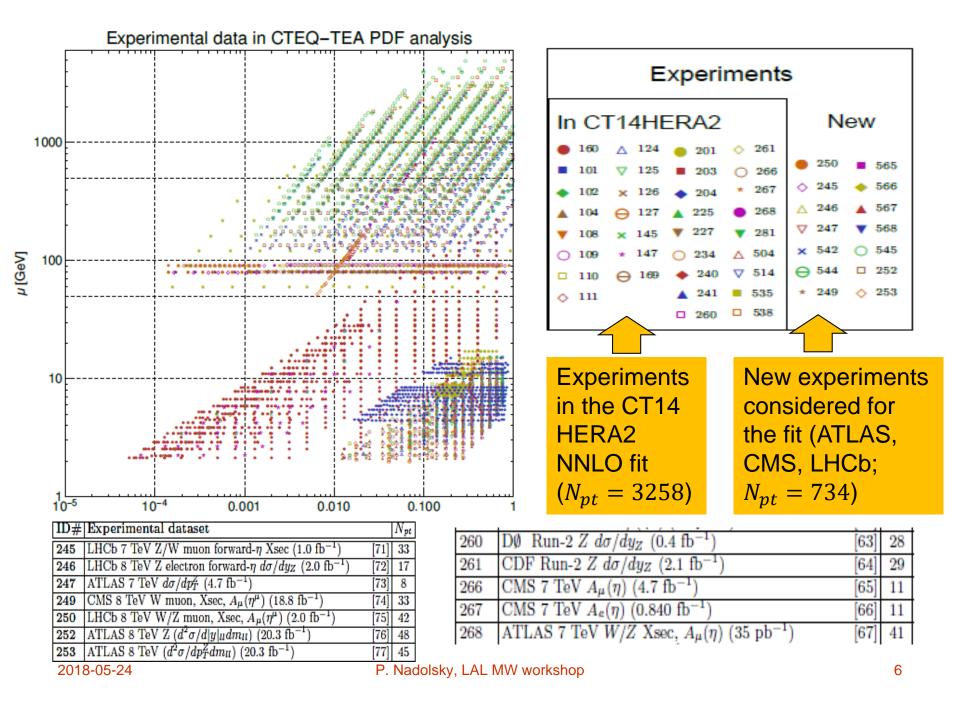

[CTEQ6.6, arXiv:0802.0007] $\cos \varphi > 0.7$ shows that the ratio σ_W / σ_Z at the LHC must be sensitive to the strange PDF s(x, Q)

Useful, but incomplete information!

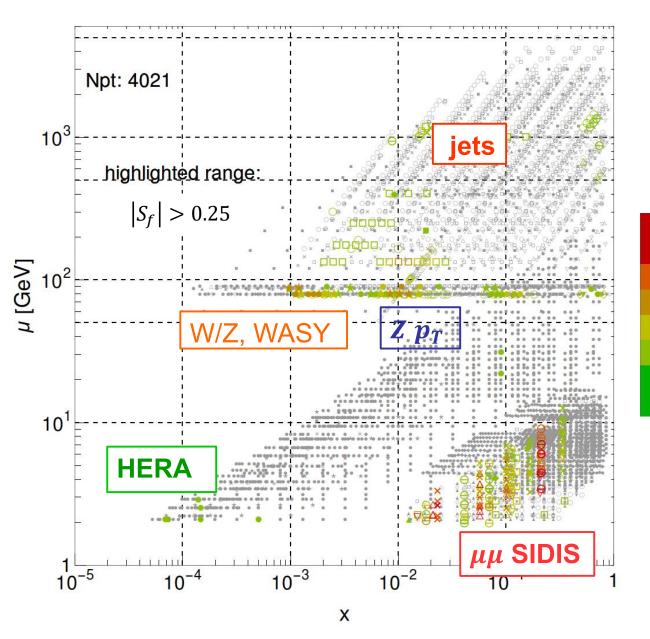
2. Program PDFSense,

B.W. Wang, T.J. Hobbs, et al., : arXiv:1803.02777

Quickly identifies **sensitivity** S_f of experimental data to any PDFdependent quantity: $\sigma(W)/\sigma(Z), \sigma_{ResBos}/\sigma_{DYRES}$, etc.



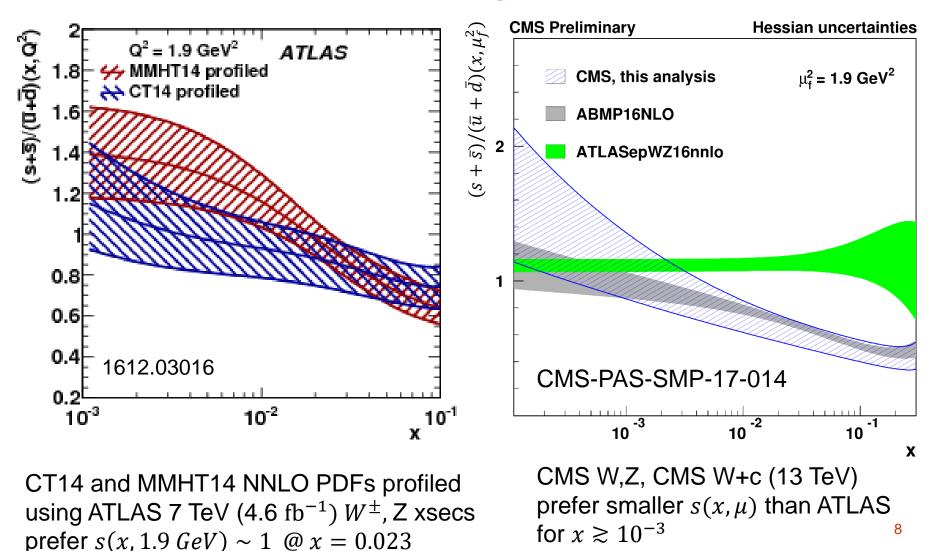
P. Nadolsky, LAL MW workshop


1.2

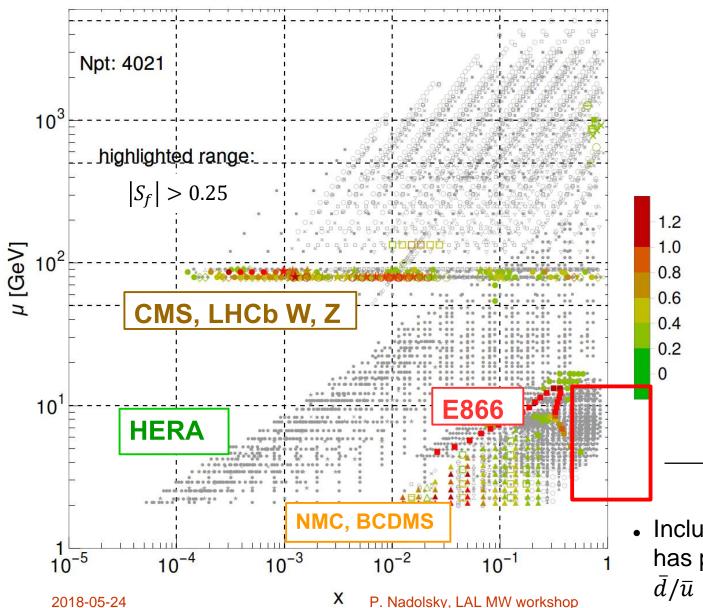
0.8 0.6 0.4

0.2

| S_f | for s(x, μ), CT14HERA2NNLO

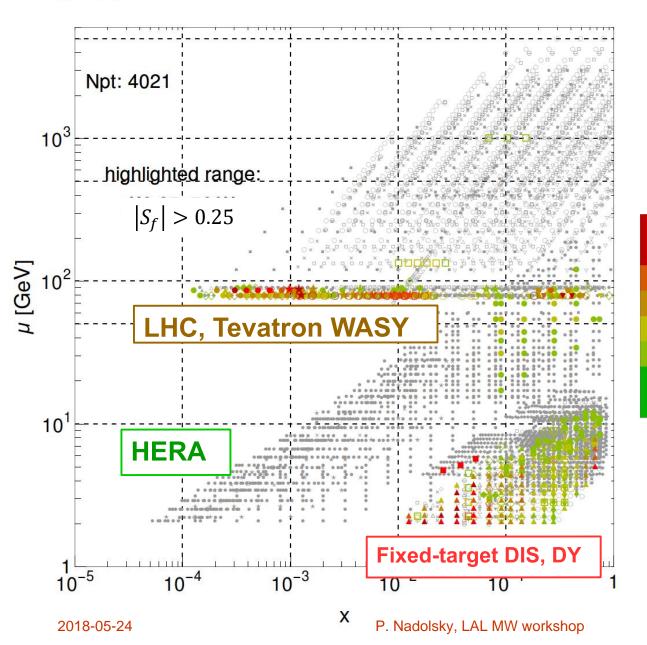


- Points with a large
 S_f have a stronger
 sensitivity to s(x_i, μ_i)
- Constraints on $s(x, \mu)$ are weaker than on the other flavors
- ^{1.2} NuTeV, CCFR dimuon
 ^{1.0} SIDIS, HERA DIS
 ^{0.8} most sensitive
- 0.4


0

- 0.2 Combined $|S_f|$ of
 - CMS7+8 jet data comparable to $|S_f|$ of one of NuTeV, CCFR data sets
 - W ASYmmetry, σ_W , σ_Z are weakly sensitive

But, wait, LHC experiments do not agree on strangeness


$|S_f|$ for $\overline{d}/\overline{u}(x,\mu)$, CT14HERA2NNLO

HERA DIS: large $N_{pt} \Rightarrow$ large total $|S_f|$

- the large E866 pd/pp sensitivity degrades at larger x
 this is a prime motivation for higher x DY measurements at E906 (SeaQuest)
- Inclusive jet production has potential to constrain \bar{d}/\bar{u} in the near future₉

$|S_f|$ fo $d/u(x,\mu)$, CT14HERA2NNLO

HERA, fixed-target DIS still most sensitive!

Individually, LHC *W*, *Z* experiments provide the essential reach to d/u and \bar{d}/\bar{u} at $x \sim 10^{-2}$

1.2 1.0

0.8

0.6

0.4

0.2

0

In the fit, they do not tangibly reduce the PDF error because they don't quite agree

10

Questions to address

1. Which experiments constrain the PDFs in the M_W , sin θ_W measurements?

2. What needs to be done to reduce the PDF uncertainty on M_W ? To phase out the fixed-target DIS/DY experiments?

[These questions can be studied as a part of the M_W analysis using the PDFSense tool, without relying on PDF reweighting or profiling]

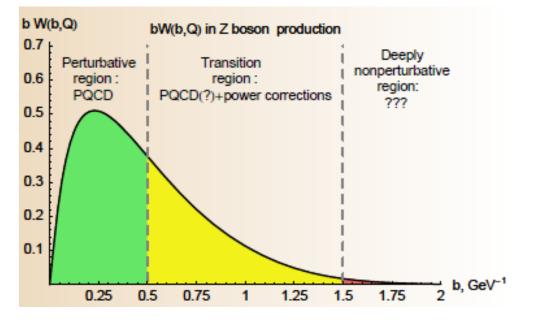
3. Benchmarking exercise for NNLO QCD + NLO EW *W*, *Z* rapidity distributions and asymmetries

Similar in spirit to the PDF4LHC benchmarking exercise that reduced $\delta_{PDF}\sigma(H_0)$ from 7% to 3% [arXiv:1510.03865]

All NNLO/resummation/PDF fitting codes must agree on benchmark **inclusive** W, Z cross sections. [Often, they don't.] Check for numerical issues. PDF fits are often done with fast NNLO QCD interfaces for "bare Born" lepton production.

Fitted W, Z experiments must agree with one another, or we cannot reduce the CT14 PDF uncertainty. [They don't.]

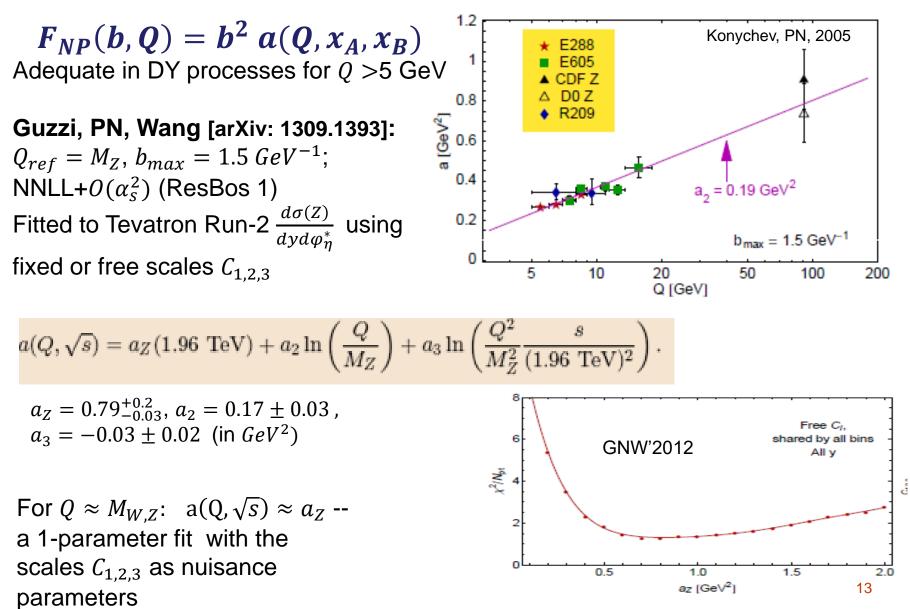
2. Nonperturbative parameters in the TMD factorization


Arise at b > 0.5 GeV⁻¹ from...

...the soft (Sudakov) function S(b, Q)

flavor-independent, *x*-independent; linear in $\ln(Q/Q_{ref})$; dominate at $Q = M_{W,Z}$; shift M_W by ×100 MeV

...TMD PDFs $\overline{\mathcal{P}}_a(x, \vec{b})$


depend on the flavor & x, not on Q; marginal, poorly known; shift M_W by $\times 1$ MeV

Universal in e^+e^- , SIDIS, DY & compatible with \overline{MS} PDFs in the CSS framework [Collins, Metz, 2004];

not automatically universal in all resummation/event generator frameworks

A Gaussian nonperturbative function, example

P. Nadolsky, LAL MW workshop

Some alternative nonperturbative functions

- BLNY form with small-x broadening in ResBos [Berge, PN, Olness, Yuan, hep-ph/0410375] $F_{NP}(b, Q, x_A, x_B)$ $= b^2 \left[0.21 + 0.68 \ln \left(\frac{Q}{3.2 \ GeV} \right) - 0.126 \ln \frac{x_A x_B}{0.1^2} + g_3 \left(\frac{1}{x_A} + \frac{1}{x_B} \right) \right]$
- Joint form for DY+SIDIS [Sun, Isaacson, Yuan, Yuan, 1406.0373] $F_{NP}(b, Q, x_A, x_B) = b^2 \left[0.212 + 0.84 \ln\left(\frac{Q}{1.55 \ GeV}\right) + g_3 \left(\left(\frac{0.01}{x_A}\right)^{0.2} + \left(\frac{0.01}{x_B}\right)^{0.2}\right) \right]$ Current Drell-Yan data are compatible with $g_3 = 0$
 - The Gaussian approximation fails at Q < 5 GeV. A more complete parametrization is discussed, e.g., in J. Collins, T. Rogers, 1412.3820
 - A variety of other forms were proposed, hard to discriminate by data

3. TMD PDFs with quark mass dependence

(PN, Kidonakis, Olness, Yuan, : hep-ph/0210082; Berge, PN, Olness, hep-ph/0509023; Recent work in SCET at NNLL-NNLO by Pietrulewisz et al., 1703.09702)

In ResBos 1, finite-mass effects are included in $\overline{\mathcal{P}}_a(x, \vec{b})$ for a = c, b at NLO in the S-ACOT- χ mass scheme – the scheme used to determined CT14 PDFs

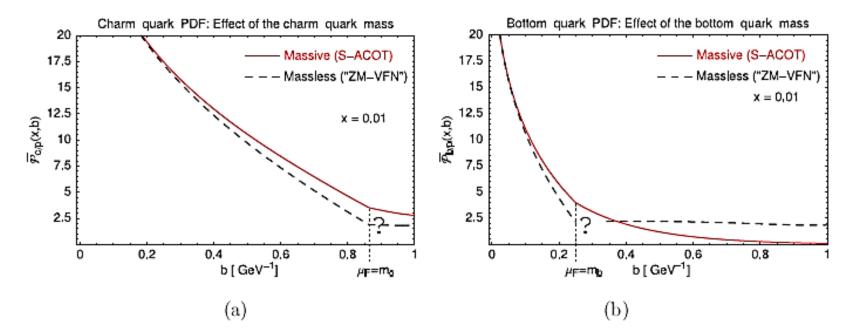
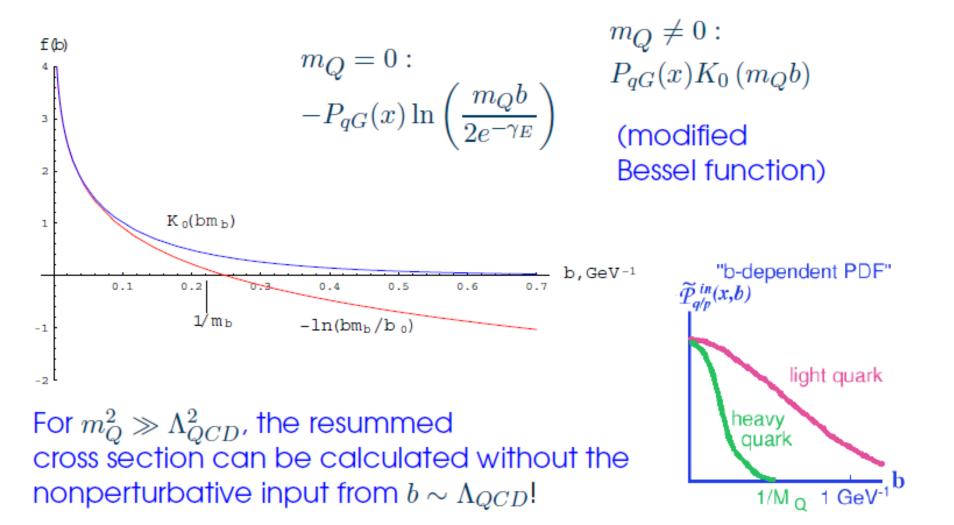



Figure 1: The *b*-dependent parton densities $\overline{\mathcal{P}}_{Q/A}(x, b, m_Q)$ vs. the impact parameter *b* for (a) charm quarks and (b) bottom quarks. The solid and dashed curves correspond to the S-ACOT and massless ("ZM-VFN") factorization schemes, respectively. 2018-05-24 P. Nadolsky, LAL MW workshop 15

m_Q suppresses contributions from $1/b \lesssim m_Q$

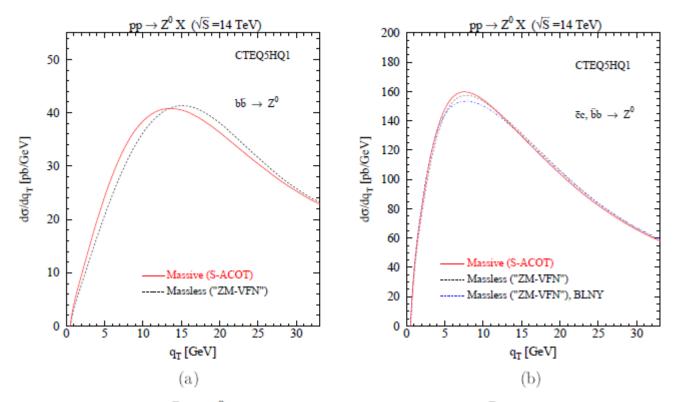


Figure 3: $d\sigma/dq_T$ for $c\bar{c}, b\bar{b} \rightarrow Z^0$ boson production at the LHC: (a) $b\bar{b}$ channel only, (b) combined $c\bar{c}$ and $b\bar{b}$ channels. The solid (red) curve shows the distribution in the massive (S-ACOT) scheme. The dashed (black) curve shows the distribution in the massless ("ZM-VFN") scheme, computed using the parametrization (11) of the nonperturbative function $\mathcal{F}_{NP}(b, Q)$. The dot-dashed (blue) line was calculated in the "ZM-VFN" scheme using an alternative parameterization [48] of the nonperturbative function $\mathcal{F}_{NP}(b, Q)$.

Total $\Delta M_W \sim 10$ MeV [~0 MeV] for $d\sigma/dp_T^e [d\sigma/dM_T^{e\nu}]$ at 14 TeV due to $m_{c,b} \neq 0$

Experiments in the CT14 HERA2 fit

	Experimental dataset		N_d
101	BCDMS F_2^p	[47]	337
102	BCDMS F_2^d	[48]	250
104	$\frac{\text{NMC } F_2^d / F_2^p}{\text{CDHSW } F_2^p}$	[49]	123
108	CDHSW $F_2^{\overline{p}}$	[50]	85
109	CDHSW F_3^p	[50]	96
110	$CCFR F_2^p$	[51]	69
111	$CCFR \ xF_3^p$	[52]	86
124	NuTeV $\nu\mu\mu$ SIDIS	[40]	38
125	NuTeV $\bar{\nu}\mu\mu$ SIDIS	[40]	33
126	$CCFR \nu \mu \mu$ SIDIS	[41]	40
127	$CCFR \bar{\nu}\mu\mu$ SIDIS	[41]	38
145		[54]	10
147	Combined HERA charm production (1.504 fb^{-1})	[39]	47
160 169	HERA1+2 Combined NC and CC DIS (1 fb^{-1}) H1 F_L (121.6 pb ⁻¹)	[6] [55]	$\frac{1120}{9}$
169	H1 F_L (121.6 pb)	ျခချ	9
ID#	Experimental dataset		N_d
201	E605 DY	[56]	119
203	E866 DY, $\sigma_{pd}/(2\sigma_{pp})$	[57]	15
204	E866 DY, $Q^3 d^2 \sigma_{pp} / (dQ dx_F)$	[58]	
225	CDF Run-1 $A_e(\eta^e)$ (110 pb ⁻¹)	[59]	11
007		L 4	
227	CDF Run-2 $A_e(\eta^e)$ (170 pb ⁻¹)	[60]	11
234	CDF Run-2 $A_e(\eta^e)$ (170 pb ⁻¹) DØ Run-2 $A_\mu(\eta^\mu)$ (0.3 fb ⁻¹)	[60] [61]	11 9
234 240	CDF Run-2 $A_e(\eta^e)$ (170 pb ⁻¹) DØ Run-2 $A_\mu(\eta^\mu)$ (0.3 fb ⁻¹) LHCb 7 TeV W/Z muon forward- η Xsec (35 pb ⁻¹)	[60] [61] [62]	11 9 14
234 240 241	CDF Run-2 $A_e(\eta^e)$ (170 pb ⁻¹) DØ Run-2 $A_\mu(\eta^\mu)$ (0.3 fb ⁻¹) LHCb 7 TeV W/Z muon forward- η Xsec (35 pb ⁻¹) LHCb 7 TeV $W A_\mu(\eta^\mu)$ (35 pb ⁻¹)	[60] [61] [62] [62]	11 9 14 5
234 240 241 260	CDF Run-2 $A_e(\eta^e)$ (170 pb ⁻¹) DØ Run-2 $A_\mu(\eta^\mu)$ (0.3 fb ⁻¹) LHCb 7 TeV W/Z muon forward- η Xsec (35 pb ⁻¹) LHCb 7 TeV $W A_\mu(\eta^\mu)$ (35 pb ⁻¹) DØ Run-2 $Z \ d\sigma/dy_Z$ (0.4 fb ⁻¹)	[60] [61] [62] [62] [63]	11 9 14 5 28
234 240 241 260 266	CDF Run-2 $A_e(\eta^e)$ (170 pb ⁻¹) DØ Run-2 $A_\mu(\eta^\mu)$ (0.3 fb ⁻¹) LHCb 7 TeV W/Z muon forward- η Xsec (35 pb ⁻¹) LHCb 7 TeV $W A_\mu(\eta^\mu)$ (35 pb ⁻¹) DØ Run-2 $Z \ d\sigma/dy_Z$ (0.4 fb ⁻¹) CMS 7 TeV $A_\mu(\eta)$ (4.7 fb ⁻¹)	[60] [61] [62] [62] [63] [63] [64]	11 9 14 5 28 11
234 240 241 260 266 267	CDF Run-2 $A_e(\eta^e)$ (170 pb ⁻¹) DØ Run-2 $A_\mu(\eta^\mu)$ (0.3 fb ⁻¹) LHCb 7 TeV W/Z muon forward- η Xsec (35 pb ⁻¹) LHCb 7 TeV $W A_\mu(\eta^\mu)$ (35 pb ⁻¹) DØ Run-2 $Z \ d\sigma/dy_Z$ (0.4 fb ⁻¹) CMS 7 TeV $A_\mu(\eta)$ (4.7 fb ⁻¹) CMS 7 TeV $A_e(\eta)$ (0.840 fb ⁻¹)	[60] [61] [62] [62] [63] [64] [65]	$ \begin{array}{r} 11 \\ 9 \\ 14 \\ 5 \\ 28 \\ 11 \\ 11 \\ 11 \end{array} $
234 240 241 260 266 267 268	CDF Run-2 $A_e(\eta^e)$ (170 pb ⁻¹) DØ Run-2 $A_\mu(\eta^\mu)$ (0.3 fb ⁻¹) LHCb 7 TeV W/Z muon forward- η Xsec (35 pb ⁻¹) LHCb 7 TeV $W A_\mu(\eta^\mu)$ (35 pb ⁻¹) DØ Run-2 $Z \ d\sigma/dy_Z$ (0.4 fb ⁻¹) CMS 7 TeV $A_\mu(\eta)$ (4.7 fb ⁻¹) CMS 7 TeV $A_e(\eta)$ (0.840 fb ⁻¹) ATLAS 7 TeV W/Z Xsec, $A_\mu(\eta)$ (35 pb ⁻¹)	[60] [61] [62] [62] [63] [63] [64] [65] [66]	$ \begin{array}{r} 11 \\ 9 \\ 14 \\ 5 \\ 28 \\ 11 \\ 11 \\ 41 \\ \end{array} $
234 240 241 260 266 267 268 281	CDF Run-2 $A_e(\eta^e)$ (170 pb ⁻¹) DØ Run-2 $A_\mu(\eta^\mu)$ (0.3 fb ⁻¹) LHCb 7 TeV W/Z muon forward- η Xsec (35 pb ⁻¹) LHCb 7 TeV $W A_\mu(\eta^\mu)$ (35 pb ⁻¹) DØ Run-2 $Z \ d\sigma/dy_Z$ (0.4 fb ⁻¹) CMS 7 TeV $A_\mu(\eta)$ (4.7 fb ⁻¹) CMS 7 TeV $A_e(\eta)$ (0.840 fb ⁻¹) ATLAS 7 TeV W/Z Xsec, $A_\mu(\eta)$ (35 pb ⁻¹) DØ Run-2 $A_e(\eta)$ (9.7 fb ⁻¹)	[60] [61] [62] [62] [63] [63] [64] [65] [66] [66] [67]	$ \begin{array}{r} 11 \\ 9 \\ 14 \\ 5 \\ 28 \\ 11 \\ 11 \\ 41 \\ 13 \\ \end{array} $
$\begin{array}{r} 234 \\ 240 \\ 241 \\ 260 \\ 266 \\ 267 \\ 268 \\ 281 \\ 504 \end{array}$	CDF Run-2 $A_e(\eta^e)$ (170 pb ⁻¹) DØ Run-2 $A_\mu(\eta^\mu)$ (0.3 fb ⁻¹) LHCb 7 TeV W/Z muon forward- η Xsec (35 pb ⁻¹) LHCb 7 TeV $W A_\mu(\eta^\mu)$ (35 pb ⁻¹) DØ Run-2 $Z \ d\sigma/dy_Z$ (0.4 fb ⁻¹) CMS 7 TeV $A_\mu(\eta)$ (4.7 fb ⁻¹) CMS 7 TeV $A_e(\eta)$ (0.840 fb ⁻¹) ATLAS 7 TeV W/Z Xsec, $A_\mu(\eta)$ (35 pb ⁻¹) DØ Run-2 $A_e(\eta)$ (9.7 fb ⁻¹) CDF Run-2 incl. jet $(d^2\sigma/dp_T^j dy_j)$ (1.13 fb ⁻¹)	[60] [61] [62] [62] [63] [63] [64] [65] [66]	$ \begin{array}{r} 11 \\ 9 \\ 14 \\ 5 \\ 28 \\ 11 \\ 11 \\ 41 \\ 13 \\ \end{array} $
234 240 241 260 266 267 268 281	CDF Run-2 $A_e(\eta^e)$ (170 pb ⁻¹) DØ Run-2 $A_\mu(\eta^\mu)$ (0.3 fb ⁻¹) LHCb 7 TeV W/Z muon forward- η Xsec (35 pb ⁻¹) LHCb 7 TeV $W A_\mu(\eta^\mu)$ (35 pb ⁻¹) DØ Run-2 $Z \ d\sigma/dy_Z$ (0.4 fb ⁻¹) CMS 7 TeV $A_\mu(\eta)$ (4.7 fb ⁻¹) CMS 7 TeV $A_e(\eta)$ (0.840 fb ⁻¹) ATLAS 7 TeV W/Z Xsec, $A_\mu(\eta)$ (35 pb ⁻¹) DØ Run-2 $A_e(\eta)$ (9.7 fb ⁻¹) CDF Run-2 incl. jet $(d^2\sigma/dp_T^j dy_j)$ (1.13 fb ⁻¹) DØ Run-2 incl. jet $(d^2\sigma/dp_T^j dy_j)$ (0.7 fb ⁻¹)	[60] [61] [62] [62] [63] [63] [64] [65] [66] [66] [67]	$ \begin{array}{r} 11 \\ 9 \\ 14 \\ 5 \\ 28 \\ 11 \\ 11 \\ 41 \\ 13 \\ \end{array} $
$\begin{array}{r} 234 \\ 240 \\ 241 \\ 260 \\ 266 \\ 267 \\ 268 \\ 281 \\ 504 \end{array}$	CDF Run-2 $A_e(\eta^e)$ (170 pb ⁻¹) DØ Run-2 $A_\mu(\eta^\mu)$ (0.3 fb ⁻¹) LHCb 7 TeV W/Z muon forward- η Xsec (35 pb ⁻¹) LHCb 7 TeV $W A_\mu(\eta^\mu)$ (35 pb ⁻¹) DØ Run-2 $Z \ d\sigma/dy_Z$ (0.4 fb ⁻¹) CMS 7 TeV $A_\mu(\eta)$ (4.7 fb ⁻¹) CMS 7 TeV $A_e(\eta)$ (0.840 fb ⁻¹) ATLAS 7 TeV W/Z Xsec, $A_\mu(\eta)$ (35 pb ⁻¹) DØ Run-2 $A_e(\eta)$ (9.7 fb ⁻¹) CDF Run-2 incl. jet $(d^2\sigma/dp_T^j dy_j)$ (1.13 fb ⁻¹)	[60] [61] [62] [63] [63] [64] [65] [66] [66] [67] [36]	$ \begin{array}{r} 11 \\ 9 \\ 14 \\ 5 \\ 28 \\ 11 \\ 11 \\ 41 \\ 13 \\ 72 \\ \end{array} $

Candidate experiments in the CTEQ-TEA fit

ID#	Experimental dataset		N_d
	LHCb 7 TeV Z/W muon forward- η Xsec (1.0 fb ⁻¹)	[70]	33
246	LHCb 8 TeV Z electron forward- $\eta d\sigma/dy_Z$ (2.0 fb ⁻¹)	[71]	17
247	ATLAS 7 TeV $d\sigma/dp_T^Z$ (4.7 fb ⁻¹)	[72]	8
249	CMS 8 TeV W muon, Xsec, $A_{\mu}(\eta^{\mu})$ (18.8 fb ⁻¹)	[73]	33
250	LHCb 8 TeV W/Z muon, Xsec, $A_{\mu}(\eta^{\mu})$ (2.0 fb ⁻¹)	[74]	42
252	ATLAS 8 TeV Z $(d^2\sigma/d y _{ll}dm_{ll})$ (20.3 fb ⁻¹)	[75]	48
253	ATLAS 8 TeV $(d^2\sigma/dp_T^Z dm_{ll})$ (20.3 fb ⁻¹)	[76]	45
542	CMS 7 TeV incl. jet, R=0.7, $(d^2\sigma/dp_T^j dy_j)$ (5 fb ⁻¹)	[34]	158
544	ATLAS 7 TeV incl. jet, R=0.6, $(d^2\sigma/dp_T^j dy_j)$ (4.5 fb ⁻¹)	[33]	140
545	CMS 8 TeV incl. jet, R=0.7, $(d^2\sigma/dp_T^j dy_j)$ (19.7 fb ⁻¹)	[35]	185
565	ATLAS 8 TeV $t\bar{t} d\sigma/dp_T^t$ (20.3 fb ⁻¹)	[38]	8
566	ATLAS 8 TeV $t\bar{t} d\sigma/dy_{< t/\bar{t}>}$ (20.3 fb ⁻¹)	[38]	5
567	ATLAS 8 TeV $t\bar{t} d\sigma/dm_{t\bar{t}}$ (20.3 fb ⁻¹)	[38]	7
568	ATLAS 8 TeV $t\bar{t} d\sigma/dy_{t\bar{t}}$ (20.3 fb ⁻¹)	[38]	5

N_d is the number of data points

Q_T distribution for $AB \to VX$

$$\frac{d\sigma_{AB\to VX}}{dQ^2 dy dq_T^2} = \sum_{a,b=g, \stackrel{(-)}{u}, \stackrel{(-)}{d}, \dots} \int \frac{d^2 b}{(2\pi)^2} e^{-i\vec{q}_T \cdot \vec{b}} \widetilde{W}_{ab}(b,Q,x_A,x_B) + Y(q_T,Q,x_A,x_B)$$

$$\widetilde{W}_{ab}(b,Q,x_A,x_B) = |\mathcal{H}_{ab}|^2 \ e^{-\mathcal{S}(b,Q)} \overline{\mathcal{P}}_a(x_A,b) \overline{\mathcal{P}}_b(x_B,b)$$

 \mathcal{S} is the soft (Sudakov) function:

$$\mathcal{S}(b,Q) = \int_{b_0^2/b^2}^{Q^2} \frac{d\bar{\mu}^2}{\bar{\mu}^2} \left[\mathcal{A}(\alpha_s(\bar{\mu})) \ln \frac{\bar{\mu}^2}{Q^2} + \mathcal{B}(\alpha_s(\bar{\mu})) \right], \quad b_0 = 2e^{-\gamma_E} \approx 1.12$$

 $\overline{\mathcal{P}}_a(x,b)$ are *b*-dependent PDF's; if $b^2 \ll Q^{-2}$,

$$\overline{\mathcal{P}}_a(x,b) = \sum_c \left[\mathcal{C}_{a/c} \otimes f_c \right] (x,b,\mu_F = \frac{b_0}{b})$$

Y is the difference of the finite-order and overlap (asymptotic) terms

2018-05-24