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In proton-antiproton collisions at this energy, W bosons are predominantly produced
in interactions between two valence quarks.
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Data periods and analysis iterations
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Fit results:

m(W) = m(W) =
80371 + 13 MeV (stat) 80343 + 14 MeV (stat)
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Systematic uncertainties, CDF and DO

Comparison of systematic uncertainties in the mr (4, ) measurement
(values in MeV)

Source CDF mr(u,v) | CDF mr(e,v) | D@ mr(e,v)
Experimental — Statistical power of the calibration sample.
Lepton Energy Scale 7 10 16
Lepton Energy Resolution 1 4 2
Lepton Energy Non-Linearity 4
Lepton Energy Loss 4
Recoil Energy Scale 5 5
Recoil Energy Resolution 7 7
Lepton Removal 2 3
Recoil Model 5
Efficiency Model 1
Background 3 4 2
W production and decay model — Not statistically driven.
PDF 10 10 11
QED 4 4 7
Boson pr 3 3 2
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Comparison with previous results;
averages (march 2012)

Mass of the W Boson

Measurement i M,, [MeV]
CDF 1988-1995 (107 pb™) % 80432 + 79
DO 1992-1995 (95 pb™) & 80478 + 83
CDF 2002-2007 (2.2 fb™) + 80387 = 19
DO 2002-2009 (5.3 b’ + 80376 + 23
Tevatron 2012 -.-' 80387 + 16
LEP —0— 80376 + 33
World average -Q- 80385 = 15

80200 80400 80600
M,, [MeV]
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March 2012: summary graph
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Combination with CDF (and LEP)

PHYSICAL REVIEW D
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Combination of CDF and DO W-Boson mass measurements

T. Aaltonen et al. (CDF Collaboration, DO Collaboration)
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We summarize and combine direct measurements of the mass of the W boson in /s = 1.96 TeV 2013
proton-antiproton collision data collected by CDF and DO experiments at the Fermilab Tevatron

Collider. Earlier measurements from CDF and DO are combined with the two latest, more precise

measurements: a CDF measurement in the electron and muon channels using data corresponding to

2.2 b~ of integrated luminosity, and a DO measurement in the electron channel using data
corresponding to 4.3 fb~! of integrated luminosity. The resulting Tevatron average for the mass of the

W boson is My, = 80387 £ 16 MeV. Including measurements obtained in electron-positron collisions

at LEP yields the most precise value of M, = 80385 + 15 MeV.
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Combination with LHC

Dzero is looking forward to a combination with LHC.

Our code still runs (cf. next slide), and it will be needed for the study of correlations.
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Preservatlon of the':_IO W mass measur ment to

|hcorp0ra o)

= Effort from 2015 to preserve previous
DO W mass measurement
" | dt=4.3b
= My, =80.375 + 0.023 GeV ¢ I T = B W AT 7Y T
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" Rederivation with MSTWOSNLO as B
example
= Relies on the avalilibility of ResBos- — BRI
Grids for newer PDF-Sets —_— |
® Relevant for combination — MSTWO8NLO
" We can easily provide the mW —c preservation
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Model of W productlon and decay

Process QCD
rRESBOs | W.Z  NLO -
WGRAD W LO  complete Ofa), Matrix Element, < 1 photon
ZGRAD VA LO  complete Oa), Matrix Element, < 1 photon
PHOTOS QED FSR. < 2 photons

Our main generator is “ResBos+Photos”. The NLO QCD in ResBos allows us to get
a reasonable description of the p_ of the vector bosons. The two leading EWK effects

are the first FSR photon and the second FSR photon. Photos gives us a reasonable
model for both.

We use W/ZGRAD to get a feeling for the effect of the
full EWK corrections.
The final “QED” uncertainty we quote is 7/7/9 MeV (m_,p_,MET).

This is the sum of different effects; the two main ones are:

- Effect of full EWK corrections, from comparison of W/ ZGRAD
in “FSR only” and in “full EWK” modes (5/5/5 MeV).

- Very simple estimate of “quality of FSR model”, from comparison e
of W/ZGRAD in FSR-only mode vs Photos (5/5/5 MeV).

2,2
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The upgraded D@ detector
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Overview of the calorimeter

1
I
End Calorimeter (EC)
Quter Hadronic
(GOMQQW%N
Middle Hadronic
(Fine & Coarse)

SN Central (1117 o
P , _., Calorimeter (CC) e
.
Inner Hadronic Eltctromaonctlc (EM) )
(Fine & Coarse) / 46000 cells
m
Electromagnetic k
Fine hadronic (FH)

50 dead channels

» Liquid argon active medium and (mostly) uranium absorber
» Hermetic with full coverage : |n| <4

> Segmentation (towers): An x A¢ = 0.1x0.1

(0.05x0.05 in third EM layer, near shower maximum)
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Final electron energy scale calibration

AFTER calorimeter calibration, simulation of effect of inst. luminosity, corrections for dead material,
modeling of underlying energy flow:

final electron energy response calibration, using Z — e e, the known Z mass value from LEP
and the standard “f method™:

We are effectively

= scale * (E__—43 GeV) + offset + 43 GeV measuring m, /m,.

measured tr

Use energy spread of electrons in Z decay (e.g. due to Z boost) to constrain scale and offset .

~ 03
_ > - i
In a nutshell: the f, observable allows you to split ‘@ I DO 4.3 fb’
your sample of electrons from Z — e e into 90_225__
subsamples of different true energy; = -
this way you can “scan” the electron energy F) -
response as a function of energy. @ 0.15- °
Y 5
O I
| L<0.72
In Run IIb we do this separately for four bins 0.075 0.72<L<1.4
of instantaneous luminosity (plot on the right). [ 1.4<L<2.2
L L>2.2
0....I....I....I....I....
1 1.01 1.02 1.03 1.04 1.05

Scale,
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Recoill model

Energy under the electron cone

L—) In-cone FSR

Underlying event

S
|- TR
%O Y Soft Recoil
Q l
Lt
2 Min Bias
=]
o Zero Bias
Hard Recoil
- L, HARD , - SOFT , - ELEC , - FSR
— HARD : -
@ Up models the hard hadronic energy from the W recoil.
o @.°FT models the soft hadronic activity from zero bias and minimum bias activity.
o i LEC — > Auy - pr(e) + pREAK models the recoil energy that was

reconstructed under the electron cone, as well as any energy form the electron that

leaked outside the cone.
e 7 °® models the out—of-cone FSR that is reconstructed as hadronic recoil.

Jan Stark

LHC precision EW working group, May 25th, 2018 16



Recoill model

Have five tunable parameters in the recoil model that allow us to adjust the
response to the hard recoil as well as the resolution (separately for hard and soft components):

—so ft . —— —2MDB —/ B
U’T,Smea?‘ -V @MB/U’T + U

P

model of spectator partons model of pileup/noise
(based on soft collisions (from collider data, random trigger)
in collider data)

hard 5 1 —PE/maap)  Z YT\ a z , UT
u'!l‘”,smear — (:R'A +B@ "€ oT /(HAD) pT(p_Z> : _I_\SA/ (u'llL T pT<_Z> ”)
T T

T

model of hard recoil response
(from detailed first-principles simulation)
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Recoll calibration

Final adjustment of free parameters in the recoil model is done in situ using
balancing in Z — e e events and the standard UA2 observables.
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Electron energy resolution

Electron energy resolution is driven by two components:
sampling fluctuations and constant term

Sampling fluctuations are driven by

| ZCandMass_CCCC_Trks |

sampling fraction of CAL modules 1600
(well known from simulation and oo DD 4.3 fb T
testbeam) and by uninstrumented 1200} R meTe
material. As discussed before, 1000 m(ee)
amount of material has been 800}~
quantified with good precision. 3
400 —
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m(Z) = 91.193 + 0.017 (stat) GeV

Good agreement between data and parameterised Monte Carlo.
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Good agreement between data and parameterised Monte Carlo.
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Good agreement between data and parameterised Monte Carlo.
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Fit results:

m(W) =
80355 + 15 MeV (stat)
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W data

WCandRecoilPt_Spatial_Match_0 ‘ x distribution with overall ? = 128.2 for 30 bins ‘
100 id ’ Xj/_nng:T1A28.2/30 :
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Here the error bars only reflect the finite These are the same W candidates
statistics of the W candidate sample. in the data. The blue band represents
the uncertainties in the fast MC
prediction due to the uncertainties
in the recoil tune from the finite
Z statistics.

Good agreement between data and parameterised Monte Carlo.
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Backgrounds
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Summary of uncertainties

[ Source o(mw) MeV mg | a(mw) MeV pr(e) | o(mw) MeV Er
Experimental
Electron Energy Scale 16 17 16
Electron Energy Resolution 2 2 3
_8 Electron Energy Nonlinearity 4 6 7
T W and Z Electron energy 4 4 4
.“;5, loss differences
9 Recoil Model 5 6 14
g < Electron Efficiencies 1 3 5
o Backgrounds 2 2 2
= Experimental Total 18 20 24
(S W production and
% decay model
7 PDF 11 11 14
QED 7 7 9
Boson pr 2 5 2
W model Total 13 14 17
\ | Total 22 24 29
statistical 13 14 15
total 26 28 33

Keep in mind that this analysis uses only Run |lb data, i.e. it is intended to be combined with our Run lla result.
23 MeV uncertainty for the combination with Run Ila.

Jan Stark
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Consistency checks

Vary the range used in the m_fit:
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Consistency checks

Vary the range used in the p (e) fit:
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Vary the range used in the MET fit:
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Consistency checks

Split data sample into four bins of instantaneous luminosity and measure W mass separately

for each bin:

W

2<L<4 _l
—my

4<L<6.‘ e

81.6 81.7 81.8 81.9 82 821

Blinded W mass (GeV)

Error bars represent W statistics.

Green bands represent
EM scale uncertainty
(100 % correlated

for m_, p, and MET).

Z

“WIZ”

3

INSANRSASAY
R R

AN

1

;—u
N
N

.
|||||||||||||i.b¢.‘lx

91 91.05 91.1 91.15 91.2 91.25 91.3 91.35 91.4
Z mass (GeV)

Sorry, still using blinded mass in these plots.
But it does not matter here ...

differences between observables and subsamples

are preserved by the blinding.

0.895 0.896 0.897 0.898 0899 09 0.901

(Blinded W mass) / (Z mass)

Error bars represent
W and Z statistics.

Green bands represent
contribution from Z alone
(100 % correlated

for m_, p_and MET).

Jan Stark

Mass ratio is stable with lumi. —
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Consistency checks

Split data sample into four data taking periods and measure W mass separately for each period:

Z “WIZ”

2

a8 EIN
es Z5
Early Run llb1 ég /_g—
a8 #al
72‘5 §§
S ast
ZR Z‘Ef\
A AD
Late Run lIb1 gs _mT 35\
as A
;S —P; PP
A H
1] —MET ES:
Early Run lIb2 éé — ' ' 7 E§§
23 ESN
== ZSAN
7L -
— 23 25
i Eas
Late Runllb2 — N - Eas
— 1] —:-
7 AT
1 I 1 I 1 * 1 I L IIIII]]]IIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIII’(tEanIIIIIIIIIII
81.6 81.7 81.8 819 82 82.1 91 91.05 91.1 91.15 91.2 91.25 91.3 91.35 914 0895 0.896 0.897 0898 0899 079 0.901
Blinded W mass (GeV) Z mass (GeV) (Blinded W mass) / (Z mass)
Error bars represent W statistics. Error bars represent
W and Z statistics.

Mass ratio is stable over time.

These are just a few examples. Many more cross-checks have been performed.
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Consistency checks

Split data sample into five bins of detector eta and measure W mass separately for each bin:

02<kh, I<0.4 #
—my
04<h 1<06 —P;
—MET
os<i, <08 — A
I |>0.8 N
1 I | | 1 /I 1 | |
81.6 81.7 81.8 81.9 82 82.1
Blinded W mass (GeV)
Error bars represent W statistics.
Green bands represent the part of the EM scale uncertainty gozrxt/ds;!lsu%rt\gm t:ip;e:egass in these plots.
. . uti
that is uncorrelated from one eta bin to another differences between observables and subsamples
(100 % correlated for m., p. and MET). are preserved by the blinding.

Mass is stable with eta.
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Consistency checks

Vary phi fiducial cut. In default analysis, keep 80 % of acceptance. Here we test four tighter requirements.

W

81.6

PhiMod 0.75  }1-
PhiMod 0.70 —
- —m,
—P,
PhiMod 0.60 SN ——
\‘—a
PhiMod 0.50 —
1 I L I 1 L I 1
81.7 81.8 81.9 82 82.1

Blinded W mass (GeV)

Error bars represent W statistics.

Z

“WIZ”

IIIIIIIIIlllllr\u\lllllllllllll

91 91.05 91.1 91.15 91.2 91.25 91.3 91.35 914 0.895 0.896 0.897 0.898 0.899 0.9 0.901

Z mass (GeV)

Sorry, still using blinded mass in these plots.
But it does not matter here ...
differences between observables and subsamples

(Blinded W mass) / (Z mass)

Error bars represent
W and Z statistics.

are preserved by the blinding.

Mass ratio is stable with fiducial requirement
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Consistency checks

Split data sample into eight bins according to the direction in phi of the measured recoil vector,
and measure W boson mass separately in each bin.

W Z “WIZ”

0.000 < PhiRec < 0.785

0.785 < PhiRec <1.570 ———
1.570 < PhiRec < 2.355 —
»
2.355 < PhiRec <3.140 —m,
—P;
3.140 <PhiRec <3925 ————|
—MET
3.925 < PhiRec <4.710
4.710 < PhiRec < 5.495
5.595 < PhiRec <6.280 ——
L I 1 l L 1 l L lllllllllllllllllllllllllllllllllllllll Illlllllllllll \l.llllllllllll
81.6 81.7 81.8 81.9 82 821 91 91.05 91.1 91.15 91.2 91.25 91.3 91.35 91.4 0.895 0.896 0.897 0.898 0.899 0.9 0.901
Blinded W mass (GeV) Z mass (GeV) (Blinded W mass) / (Z mass)
Error bars represent W statistics. Error bars represent
W and Z statistics.
Sorry, still using blinded mass in these plots.
But it does not matter here ...
differences between observables and subsamples
are preserved by the blinding. Mass ratio is stable with recoil phi.
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Consistency checks

Split data sample into two bins of u and measure W mass separately for each bin:

W

u, <0 GeV
7
_mT
—P,
-\ ~MET
u,>0 GeVv

L | . | I
81.6 81.7 81.8 81.9 82 82.1
Blinded W mass (GeV)

Sorry, still using blinded mass in these plots.

But it does not matter here ...

differences between observables and subsamples
are preserved by the blinding.

Error bars represent W statistics.

Mass is stable with u”.
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Consistency checks

Vary phi fiducial cut. In default analysis, keep 80 % of acceptance. Here we test four tighter requirements.

W

81.6

PhiMod 0.75  }1-
PhiMod 0.70 —
- —m,
—P,
PhiMod 0.60 SN ——
\‘—a
PhiMod 0.50 —
1 I L I 1 L I 1
81.7 81.8 81.9 82 82.1

Blinded W mass (GeV)

Error bars represent W statistics.

Z

“WIZ”

IIIIIIIIIlllllr\u\lllllllllllll

91 91.05 91.1 91.15 91.2 91.25 91.3 91.35 914 0.895 0.896 0.897 0.898 0.899 0.9 0.901

Z mass (GeV)

Sorry, still using blinded mass in these plots.
But it does not matter here ...
differences between observables and subsamples

(Blinded W mass) / (Z mass)

Error bars represent
W and Z statistics.

are preserved by the blinding.

Mass ratio is stable with fiducial requirement
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PDF uncertainty, m_templates, 68% CL - Pythia ’

3 45
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. CC (11.36 MeV)
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FIG. 1. Comparison of the PDF uncertainty for the CC only and CC/EC cases. Variance in MeV?2,
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