Higgs exotic decays

Roger Caminal Armadans

WG3 internal meeting 08/03/2018

Higgs to mesons

ORare decays of the Higgs boson to a meson and a photon give a direct window to the Yukawa couplings.

Decay mode	Branching rat	io [10 ⁻⁶]	Decay constant [MeV]		-	et	
$h \rightarrow \pi^+ W^-$	$4.30 \pm 0.01_f \pm 0.00_{\rm CKM} \pm 0.17_{\Gamma_b}$		130.4 ± 0.2	130.4 ± 0.2 Decay mode		⁶] Decay constant [MeV]	
$h \rightarrow \rho^+ W^-$	$10.92 \pm 0.15 \ell \pm 0.00$ CKM ± 0.43 F.		207.8 ± 1.4	$h \rightarrow \pi^0 Z$		h_h 130.4 ± 0.2	
$h \rightarrow K^+W^-$	$0.33 \pm 0.004 \pm 0.00$ grave ± 0.01 r.		156.2 ± 0.7 $h \rightarrow \eta Z$		$0.83 \pm 0.08_f \pm 0.03_I$	$f_{\eta}^{s} = -110.7 \pm 5.5$	
$h \rightarrow K^{*+}W^{-}$	$0.56 \pm 0.03 \pm 0.00$ grave ± 0.02 r		203.2 ± 5.9	$h ightarrow \eta' Z$	$1.24 \pm 0.12_f \pm 0.05_{\rm I}$	$f^s_{\eta'} = 135.2 \pm 6.4$	
$h \rightarrow D^+W^-$	$0.56 \pm 0.03_f \pm 0.00_{\text{CKM}} \pm 0.02_{\Gamma_h}$		200.2 ± 0.0 204.6 ± 5.0	$h \rightarrow \rho^0 Z$ $7.19 \pm 0.09_f \pm 0$		216.3 ± 1.3	
$h \rightarrow D^{*+}W^{-}$	$0.30 \pm 0.03f \pm 0.04_{\text{CKM}} \pm 0.02_{\Gamma_h}$ 1.04 ± 0.12 ± 0.07_{cms} ± 0.04_{-}		204.0 ± 0.0 278 ± 16	$h \rightarrow \omega Z$	$0.56 \pm 0.01_f \pm 0.02_{\rm I}$	$f_{\omega} = 194.2 \pm 2.1, f_{\omega}^s = -13.8 \pm 4.8$	
$h \rightarrow D^+ W^-$	$1.04 \pm 0.12_f \pm 0.07_{\text{CKM}} \pm 0.04_{\Gamma_h}$		270 ± 10	$h \rightarrow \phi Z$	$2.42 \pm 0.05_f \pm 0.09_I$	$f_{\phi} = 223.0 \pm 1.4, f_{\phi}^s = 230.4 \pm 2.6$	
$h \rightarrow D_s^* W$	$17.12 \pm 0.01_f \pm 0.30_{\text{CKM}} \pm 0.07_{\Gamma_h}$		237.3 ± 4.0	$h \rightarrow J/\psi Z$	$2.30 \pm 0.06_f \pm 0.09_f$	403.3 ± 5.1	
$h \rightarrow D_s^+ W$	$25.10 \pm 1.45_f \pm 0.8$	$1_{\rm CKM} \pm 0.98_{\Gamma_h}$	311 ± 9			$\Gamma_{h} = 684.4 \pm 4.6$	
$h \rightarrow B^+ W$						475.8 ± 4.3	
$h \rightarrow B^{s+W}$	Mode		Branching Fraction [10 ⁻⁶]			411 2 + 2 7	
1 . D+TT			Dranening I raeu			411.0 ± 0.7	
$h \rightarrow B_c^+ W$	Method	NROCD [1486	LCDA LO [14	1851 LCDA	NLO [1488]	h 411.5 ± 5.7	
$h \rightarrow B_c^+ W$	Method	NRQCD [1486	[6] LCDA LO [14	185] LCDA	NLO [1488]	h 411.5 ± 5.7	
$h \rightarrow B_c^+ W$	Method Br $(h \rightarrow \rho \gamma)$	NRQCD [1486	[5] LCDA LO [14 19.0 \pm 1.5	185] LCDA	NLO [1488] 5.8 ± 0.8	h 411.5 ± 5.7	
$h \rightarrow B_c^+ W$	Method $Br(h \rightarrow \rho \gamma)$ $Br(h \rightarrow \omega \gamma)$	NRQCD [1486 - -	[5] LCDA LO [14 19.0 ± 1.5 1.60 ± 0.17	185] LCDA 16 7 1.4	NLO [1488] 5.8 ± 0.8 18 ± 0.08	h 411.5 ± 3.7	
$h \rightarrow B_c^+ W$	Method $Br(h \rightarrow \rho \gamma)$ $Br(h \rightarrow \omega \gamma)$ $Br(h \rightarrow \phi \gamma)$	NRQCD [1486	$\begin{array}{c} \text{Dranching Fractions}\\ \text{5]} \text{LCDA LO [14]}\\ 19.0 \pm 1.5\\ 1.60 \pm 0.13\\ 3.00 \pm 0.13\end{array}$	185] LCDA [16] [16] [16] [16] [16] [16] [16] [16]	NLO [1488] 5.8 ± 0.8 18 ± 0.08 31 ± 0.11	411.5 ± 3.7	
$h \rightarrow B_c^+ W$	Method $Br(h \rightarrow \rho \gamma)$ $Br(h \rightarrow \omega \gamma)$ $Br(h \rightarrow \phi \gamma)$ $Br(h \rightarrow J/\psi \gamma)$	NRQCD [1486 	$\begin{array}{c} \text{Dranching Fracts}\\ 5 \end{bmatrix} \text{LCDA LO } \begin{bmatrix} 14 \\ 19.0 \pm 1.5 \\ 1.60 \pm 0.17 \\ 3.00 \pm 0.13 \\ 2.79 {}^{+0.16}_{-0.15} \\ \end{array}$	16 [10] [185] LCDA [16] [7] 1.4 [3] 2.3 [2.9]	NLO [1488] 5.8 ± 0.8 18 ± 0.08 31 ± 0.11 5 ± 0.17	h =====	
$h \rightarrow B_c^+ W$	Method $Br(h \to \rho \gamma)$ $Br(h \to \omega \gamma)$ $Br(h \to \phi \gamma)$ $Br(h \to J/\psi \gamma)$ $Br(h \to \Upsilon(1S) \gamma)$	NRQCD [1486 - - - (0.61 ^{+1.74} _{-0.61}) · 10	$\begin{array}{c} \text{Dranching Fractions}\\ \hline \text{Dranching Fractions}\\ \hline 19.0 \pm 1.5\\ \hline 1.60 \pm 0.13\\ \hline 3.00 \pm 0.13\\ \hline 2.79 \substack{+0.16\\-0.15}\\ \hline -3 & -\end{array}$	165] LCDA [10] [10] [10] [10] [10] [10] [10] [10]	5.8 ± 0.8 18 ± 0.08 131 ± 0.11 5 ± 0.17 $+ 1.76 \\ - 1.23) \cdot 10^{-3}$	h	
$h \rightarrow B_c^+ W$	Method $Br(h \rightarrow \rho \gamma)$ $Br(h \rightarrow \omega \gamma)$ $Br(h \rightarrow \phi \gamma)$ $Br(h \rightarrow J/\psi \gamma)$ $Br(h \rightarrow \Upsilon(1S) \gamma)$ $Br(h \rightarrow \Upsilon(2S) \gamma)$	NRQCD [1486 - - $(0.61^{+1.74}_{-0.61}) \cdot 10$ $(2.02^{+1.86}_{-1.28}) \cdot 10$	$\begin{array}{c} \text{5} \\ \text{5} \\ \text{19.0} \pm 1.5 \\ 1.60 \pm 0.17 \\ 3.00 \pm 0.13 \\ 2.79 \substack{+0.16 \\ -0.15} \\ -3 \\ -3 \\ -3 \\ -3 \\ -3 \\ -3 \\ -3 \\ -$	16 [10] [85] LCDA [7 1.4 [3 2.3 [4.61] [2.34]	5.8 ± 0.8 8 ± 0.08 81 ± 0.11 5 ± 0.17 $^{+1.76}_{-1.23} \cdot 10^{-3}$ $^{+0.76}_{-1.00} \cdot 10^{-3}$	h	
$h \rightarrow B_c^+ W$	Method $Br(h \rightarrow \rho \gamma)$ $Br(h \rightarrow \omega \gamma)$ $Br(h \rightarrow \phi \gamma)$ $Br(h \rightarrow f(h \rightarrow f(1S) \gamma)$ $Br(h \rightarrow \Upsilon(2S) \gamma)$ $Br(h \rightarrow \Upsilon(3S) \gamma)$	$\begin{array}{c} - \\ - \\ (0.61 \begin{array}{c} ^{+1.74} \\ - \\ (2.02 \begin{array}{c} ^{+1.86} \\ - \\ 1.28 \end{array}) \cdot 10 \\ (2.44 \begin{array}{c} ^{+1.75} \\ - \\ 1.30 \end{array}) \cdot 10 \end{array}$	$\begin{array}{c} \text{blanching fracts}\\ \text{b} \\ \text{c} \\ 19.0 \pm 1.5 \\ 1.60 \pm 0.17 \\ 3.00 \pm 0.13 \\ 2.79 \substack{+0.16 \\ -0.15} \\ -3 \\ -3 \\ -3 \\ -3 \\ -3 \\ -3 \\ -3 \\ -$	165] LCDA [10] [10] [10] [10] [10] [10] [10] [10]	5.8 ± 0.8 8 ± 0.08 81 ± 0.11 5 ± 0.17 $^{+1.76}_{-1.23} \cdot 10^{-3}$ $^{+0.76}_{-1.00} \cdot 10^{-3}$ $^{+0.76}_{-1.13} \cdot 10^{-3}$	$h = \sqrt{\gamma}$	

Higgs to mesons

OSeveral results published:

□ h→ $\phi\gamma$ [<u>1607.03400</u>, <u>1507.03031</u>].

 \Box h \rightarrow J/ $\psi\gamma$, Y γ [1501.03276].

 \Box h $\rightarrow \phi \gamma$, $\rho \gamma$ [<u>1712.02758</u>].

ONew ideas:

 $\Box h \rightarrow K^{*^{0}}(K^{+}\pi^{-})\gamma, D^{*^{0}}(D^{+}\pi^{-})\gamma, \omega(\pi^{+}\pi^{-}\pi^{0})\gamma$

OIn general far away from being sensitive due to very small branching ratios.

OIn terms of needs, analyzers think they are covered as the relevant SM BRs are calculated and there is some guidance for the relevant BSM models

- OLepton Flavor Violating decays of the Higgs boson would be a clear indication of physics BSM.
- OExisting results for $H \rightarrow \mu \tau / e\tau$ both lep-lep and lep-had channels [1604.07730, 1508.03372]
 - ☐ Most simplistic model for the LFV Higgs decays: a simple off-diagonal Yukawa coupling for h(125)→ll'.
 - ☐ Analyzers argue that the H→eµ cross-section values accessible at LHC are already excluded by MEG results (or some level of fine-tuning is needed).
 - Benchmark models available where a 10⁻⁴ BR for H→eµ is compatible with MEG limits?

Higgs to (semi) invisible

OSeveral final states studied by ATLAS:

 $\Box h(\rightarrow \gamma \gamma) + E_T^{miss} [1506.01081, 1306.03948]$

□ h(→bb)+E^{miss} [<u>1707.01302</u>]

Mono-jet analysis [1502.01518].

☐ Zh(→invisible) [<u>1402.3244, 1711.00431, 1708.09624</u>]

□ VBF h(→invisible) [1508.07869].

 \Box V(\rightarrow had)h(\rightarrow invisible) [<u>1504.04324</u>].

OA handful of interpretations for many BSM models [1312.4992] covered, and more to come!

Higgs to SM particles via light bosons

OHiggs boson decays to a pair of new spin-zero particles, decaying each to a pair of SM particles.

OPredicted by many theories of physics BSM:

NMSSM

- □ Several models of DM
- Neutral Naturalness

Π...

OSeveral 2HSM+S benchmark models already provided in the WG3 Higgs Exotic Decay twiki.

Higgs to SM particles via light bosons

OBoost in the activity of this group in ATLAS.

Searches to cover (almost) every sensitive final state.

- OSetting limits on several 2HDM+S and SM +V benchmark models.
- OSummary plot in preparation.
- OSeveral final states studied by ATLAS:

☐ h→2a→ 4b [<u>1606.08391]</u>

□ h→2a→ 2µ2τ [<u>1505.01609</u>]

 \Box h→2Zd / ZZd / 2a→ 4 ℓ [<u>1505.07645</u>, <u>1802.03388</u>]

 $\Box h \rightarrow 2a \rightarrow 4\gamma \ [\underline{1509.05051}]$

Other final states currently being studied.

- OMany public results from Run 1 and 2 involving LLPs coming from the Higgs boson, specially exotic signatures looking for:
 - Displaced jets [1504.03634, ATLAS-CONF-2016-103]
 - Displaced lepton-jets [ATLAS-CONF-2016-042]
- [1504.03634]

ONew ideas and possible analysis re-interpretations currently being considered.

Comments from the experimentalists

ODifferent needs from the other Higgs working groups

- We are not so dependent on how well the cross sections and branching ratios are calculated.
- \Box We are currently using very precise calculations for pp \rightarrow h(125), but very simplistic h \rightarrow X models.
- OThe needs for the ATLAS analyses on the Exotic Higgs Decays domain include:
 - A list of the models that are currently best motivated based on the experimental results up to now.
 - Very reduced person power spread in many different analyses.
 - Provide recommendations on how to generate MC for such models (or even generate them ourselves) so that feasibility studies can be made.

OWe have been asked to fill up the following table:

<u>https://twiki.cern.ch/twiki/bin/view/LHCPhysics/</u> <u>LHCHXSWG3#Higgs_Exotic_Decays</u>

Task	Involved persons	Status	Timescale
Provide final recommendations for h->W/Z+meson		Planned	
Add feasibility studies for Higgs rare decays beyond gamma+J/Psi, gamma+phi, gamma+Upsilon		Planned	
Add feasibility studies for h->2f+MET and develop benchmark scenarios predicting this type of signatures		Planned	
Study feasiblity for searches for Higgs decays involving one or more displaced vertices.		Planned	
What is the best way to present Higgs searches with displaced vertices to allow a simple recast by theorists?		Planned	