

Two issues with spin in version 1 lattice

Martin Gaißer

Problem Description

What happens to the vertical spin component if quadrupoles are misplaced?

Simulation	Vertical spin precession rate
Yann D. (Bmad with PTC)	$pprox$ 300 μ rad/s
Yann D. (Bmad with RK4)	$pprox$ 0.6 μ rad/s
Selcuk H. (RK4)	$pprox$ 0.7 μ rad/s
Emerey V. (COSY Infinity)	$pprox 100 \mu$ rad/s

 Various people simulated supposedly same lattice and got rather different results

• Question: Is it a numerical issue?

Overview: My Program

- Simple but very modular program
- Can use different integration algorithms
- Can use different data types (double, long double, arbitrary precision)
- → easy to change all kinds of things
- \rightarrow ideal to study numerical issues
- → ideal to understand single particle motion
- → not so good to calculate beam properties

Test Lattice

Use simple test lattice:

- Run tests with RK8 integrator with different step sizes and different data types → choose dt = 3e-9, long double (accuracy vs. speed)
- Confirm that ideal particle does what it should do

- Misplace one quad vertically by 10mm
- Start particle with x- and y-offset (10mm)
- Still no cavity

→ no vertical spin build-up

- Misplace one quad vertically by 1mm
- Start particle with x- and y-offset (10mm)
- Now with cavity

→ Get significant vertical spin build-up, comparable to high end estimates of other people (from different lattice!)

RWTHAACHEN UNIVERSITY

- Misplace one quad vertically by 1mm
- Start particle with x- and y-offset (10mm)
- Now with cavity, set cavity B-field to zero

→ Vertical spin build-up is (almost) gone!

- Misplace one quad vertically by 1mm
- Start particle on design orbit
- Put additional sextupole in empty straight section

No cavity:

0.0000000 -0.0000004 -0.0000006 -0.0000008 -0.0000010 -0.0000012 -0.0000014 -0.000014 -0.000014 -0.000014 -0.000014 -0.000015 time/s

Cavity without B-field:

Explanation

- Longitudinal velocity component in quads leads to vertical spin motion that does average out as long as spin stays essentially in forward direction
- Vertical quad offset shifts equilibrium orbit vertically
- Quad offset doesn't change averaging out of spin build-up because quadrupole fields are linear
- Doesn't work anymore if there are components with nonlinear (vertical) field dependence (sextupoles, fringe fields, etc.)!
- Beam doesn't go through center of cavity → sees average horizontal B-field → vertical spin build-up
- Explains why setting B=0 in cavity removes spin build-up
- Horizontal spin precession rate depends on presence of cavity → fast horizontal rotation can lead to (temporary) build-up

→ Vertical build-up in different programs depends a lot on small details (cavity yes/no, magnitude of betatron/synchrotron oscillations, implementation with or without fringe fields, cavity implementation with/without B-field & nonlinear radial field dependence, etc.)

Summary so far

- You will always have a cavity with B-field
- You will always have fields that have nonlinear vertical field dependence
- The horizontal spin component will always drift for some particles

→ In reality there will always be a vertical spin build-up!

New (at least for me)

→ Two seem to be rotated (vs. lattice) versions of each other, important is symmetry with respect to deflectors

CW/CCW operation

CW/CCW operation cancels a lot of systematics:

→ Reverse velocity and spin, fields are equal for both beams

$$\begin{split} \frac{d\vec{s}}{dt} &= \vec{s} \times (\vec{\Omega}_{MDM} + \vec{\Omega}_{EDM}) \\ \vec{\Omega}_{MDM} &= \frac{q}{m} \left(G\vec{B} - \frac{\gamma G}{\gamma + 1} \vec{\beta} (\vec{\beta} \cdot \vec{B}) - \left(G - \frac{1}{\gamma^2 - 1} \right) \frac{\vec{\beta} \times \vec{E}}{c} \right) \\ \vec{\Omega}_{EDM} &= \frac{\eta q}{2mc} \left(\vec{E} - \frac{\gamma}{\gamma + 1} \vec{\beta} (\vec{\beta} \cdot \vec{E}) + c\vec{\beta} \times \vec{B} \right) \end{split}$$

- No B-field: EDM-term changes sign, MDM-term doesn't
- B-field of cavity doesn't change that because it reverses sign for CCW beam
- Static B-fields and rf-E-fields can cause problems

→ If false rotations are small they can be canceled by CW/CCW operation if the beams have the same phase space distribution!

Final Ring

Part 2: Final Ring

1.) Spin Coherence Time

Perfect ring:

- Design particle has frozen spin
- Particle at magic momentum started from position off axis will oscillate
- If it oscillates around design orbit the orbit becomes longer → need higher energy to keep revolution frequency → off magic momentum → spin rotates
- Other option: oscillate about a different equilibrium orbit (negative average x-position) → off magic momentum inside field regions → spin rotates
- Betatron oscillations limit spin coherence time (SCT)

1.) Spin Coherence Time

Simulate particle at magic momentum with initial x- and y-offset in straight section of 10mm for T = 5s:

Estimate precession rate:

$$\cos(\omega_y T) \approx 0.978$$

$$\Rightarrow \omega_y = \frac{\arccos(0.978)}{5 \,\mathrm{s}} = 0.042 \,\mathrm{1/s}$$

How long does it take for a 90° rotation?

$$\cos(\omega_y t) = 0$$

$$\Rightarrow t = \frac{\arccos(0)}{\omega_y} = 37.4 \,\mathrm{s}$$

→ Very rough estimate for SCT: 10s-100s (depends on phase space distributions)

Simulate exactly the same situation as before but with some changes to the ring:

- Randomly misplace all quadrupoles, horizontally and vertically with one sigma offset = $10\mu m$
- Randomly rotate all quads and bends with one sigma rotation of 10μrad
- Randomly change field strength of all elements with one sigma relative field change of 1e-5

Particle started on the design orbit with magic momentum:

number of turns

M

Particle started on the design orbit with magic momentum:

- Get extremely large vertical precession rate (compared to expected nrad/s EDM signal)!
- May not look that bad in shorter (1ms) simulations!
- Cavity needs to be adjusted to freeze horizontal spin → happens only after 1-2 seconds of data taking → need extreme temporal stability of accelerator!
- CW/CCW beams will cancel error to a large degree, drifts in parameters will make averaging imperfect!

- Ideal case: no spin precession axis → small (random) deviations from ideal case lead to random spin precession axis!
- Leads to vertical (spin) decoherence!
- Some signals won't cancel in CW/CCW operation: fast signals like voltage ripples, signals on harmonic of revolution frequency, e.g. induced by beam itself