
Nix and LHCb

Chris Burr
University of Manchester

21st March 2018

Who am I?

• PhD student at Manchester working on LHCb
• Supposed to be working on analysis and velo alignment
• Generally interested in computing
• Before starting this work I tried a few things

• Including packaging ROOT/XRootD with conda

2

Why this started?

• This started with analysis preservation in mind
• Post-DaVinci environments can be tricky to share/preserve
• Docker is great, but can’t be used in most places
• Must be something better

• Looked at various options, settled on Nix
• Nix could be more generally useful everywhere

3

What is Nix?

What is Nix?

• Nix is a “purely functional package manager”

• Works with Linux and macOS
• Can be used alongside other package managers
• There is also a Linux distribution, NixOS

• Source-based
• Packages are built from Nix expressions
• Builds aim to be portable, reproducible and deterministic
• Lots more features available when used fully

5

What is Nix?

• Nix is a “purely functional package manager”

• Source-based
• Binary caches can be used to avoid compiling everything

• Packages are built from Nix expressions
• Builds aim to be portable, reproducible and deterministic
• Lots more features available when used fully

5

What is Nix?

• Nix is a “purely functional package manager”

• Source-based
• Packages are built from Nix expressions

• Typically O (10) lines long
• Defined using a custom functional language
• ∼14,000 package definitions available in nixpkgs

• Builds aim to be portable, reproducible and deterministic
• Lots more features available when used fully

5

What is Nix?

• Nix is a “purely functional package manager”

• Source-based
• Packages are built from Nix expressions
• Builds aim to be portable, reproducible and deterministic

• Lots more features available when used fully

5

What is Nix?

• Nix is a “purely functional package manager”

• Source-based
• Packages are built from Nix expressions
• Builds aim to be portable, reproducible and deterministic
• Lots more features available when used fully

• NixOS
• Single and multi user modes
• Transactional approach to updates and configuration

5

How does Nix work?

• Everything is stored in /nix/ (by default)
• Packages are kept in /nix/store
• Each package lives in a directory named by hash of it’s dependencies

• gcc6: /nix/store/6d2zqb3ms49xqqcz459ypkqgv67sqrl4-root-6.10.04/
• gcc7: /nix/store/h082fjwa5wqzcbq6qz83d221j1fv6khc-root-6.10.04/

• Optionally packages can have multiple outputs
• bin, lib, python-lib, ...

6

Nix expressions

• A collection of nix expressions is known as a channel
• Nixpkgs is the most common: https://github.com/NixOS/nixpkgs 1

• Nixpkgs also provides helper functions
• buildEnv: Makes a meta package of symlinks
• fetchurl/fetchgit/fetchpatch/fetchcvs/fetchipfs
• stdenv.mkDerivation

• Uses the standard environment to run a genericBuild
• Sets up linker flags and RUNPATH
• Rewrites the interpreter paths of shell scripts to /nix/store/...
• Also uses test suites for many packages

1There are also release channels at: https://github.com/NixOS/nixpkgs-channels 7

https://github.com/NixOS/nixpkgs
https://github.com/NixOS/nixpkgs-channels

Nix expressions

• A collection of nix expressions is known as a channel
• Nixpkgs is the most common: https://github.com/NixOS/nixpkgs 1

• Nixpkgs also provides helper functions
• buildEnv: Makes a meta package of symlinks
• fetchurl/fetchgit/fetchpatch/fetchcvs/fetchipfs
• stdenv.mkDerivation

• Uses the standard environment to run a genericBuild
• Sets up linker flags and RUNPATH
• Rewrites the interpreter paths of shell scripts to /nix/store/...
• Also uses test suites for many packages

1There are also release channels at: https://github.com/NixOS/nixpkgs-channels 7

https://github.com/NixOS/nixpkgs
https://github.com/NixOS/nixpkgs-channels

A Nix expression for Gaudi

1 { stdenv, fetchurl, fetchpatch, boost, clhep, cmake, cppunit, gperftools
2 , heppdt, jemalloc, libunwind, python, tbb, utillinux, xercesc, zlib
3 , ninja, root, gdb, aida, gsl, libpng }:
4
5 stdenv.mkDerivation rec {
6 name = "gaudi-${version}";
7 version = "v29r0";
8
9 src = fetchurl {

10 url = "https://gitlab.cern.ch/gaudi/Gaudi/repository/${version}/archive.tar.gz";
11 sha256 = "1ijdq1l8rscwij9hgyzrlvga1qg7b0csx76wcd76x3yli8bc766b";
12 };
13
14 buildInputs = [
15 cmake python gdb aida ninja root boost clhep cppunit gperftools heppdt
16 jemalloc libunwind tbb utillinux xercesc zlib gsl libpng
17];
18
19 patches = [./fix-profiling.patch];
20
21 cmakeFlags = [
22 "-GNinja"
23];
24
25 enableParallelBuilding = true;
26
27 meta = {
28 homepage = https://gaudi.web.cern.ch/gaudi/;
29 description = "A basis for HEP experiment frameworks";
30 platforms = stdenv.lib.platforms.unix;
31 maintainers = with stdenv.lib.maintainers; [chrisburr];
32 };
33 }

8

What have I done?

Moving the nix store directory

• Installed Nix inside docker without cvmfs mounted
• Built Nix changing /nix/ to /cvmfs/lhcbdev.cern.ch/nix/

• Built Nix again....
• And it works!!!!
• But the official binary cache can’t be used anymore...
• Have since created a gitlab group: https://gitlab.cern.ch/lhcb-nix/

• bootstrap: Use GitLab CI to build nix with a custom store directory
• Also contains forks of hydra, nix and nixpkgs

10

https://gitlab.cern.ch/lhcb-nix/

Moving the nix store directory

• Installed Nix inside docker without cvmfs mounted
• Built Nix changing /nix/ to /cvmfs/lhcbdev.cern.ch/nix/

• Built Nix again....

• And it works!!!!
• But the official binary cache can’t be used anymore...
• Have since created a gitlab group: https://gitlab.cern.ch/lhcb-nix/

• bootstrap: Use GitLab CI to build nix with a custom store directory
• Also contains forks of hydra, nix and nixpkgs

10

https://gitlab.cern.ch/lhcb-nix/

Moving the nix store directory

• Installed Nix inside docker without cvmfs mounted
• Built Nix changing /nix/ to /cvmfs/lhcbdev.cern.ch/nix/

• Built Nix again....
• And it works!!!!
• But the official binary cache can’t be used anymore...

• Have since created a gitlab group: https://gitlab.cern.ch/lhcb-nix/
• bootstrap: Use GitLab CI to build nix with a custom store directory
• Also contains forks of hydra, nix and nixpkgs

10

https://gitlab.cern.ch/lhcb-nix/

Moving the nix store directory

• Installed Nix inside docker without cvmfs mounted
• Built Nix changing /nix/ to /cvmfs/lhcbdev.cern.ch/nix/

• Built Nix again....
• And it works!!!!
• But the official binary cache can’t be used anymore...
• Have since created a gitlab group: https://gitlab.cern.ch/lhcb-nix/

• bootstrap: Use GitLab CI to build nix with a custom store directory
• Also contains forks of hydra, nix and nixpkgs

10

https://gitlab.cern.ch/lhcb-nix/

Hydra build “farm”

• Set up an instance of Hydra2 on openstack: http://lhcb-hydra.cern.ch:3000/
• Took less than an hour to get my first build Including setting up PostgreSQL!

• Uses the local machine for builds
• Since moved to using DBoD and GitLab CI to build a container

• Setting up an extra worker was trivial
• Just need to be able to SSH to a machine with Nix
• Docker container on lblhcbpr3 with my build of Nix installed

• Support for slaves with different architectures or extra features (AVX?)

2https://nixos.org/hydra/

11

http://lhcb-hydra.cern.ch:3000/
https://nixos.org/hydra/

Hydra build “farm”

• Set up an instance of Hydra2 on openstack: http://lhcb-hydra.cern.ch:3000/
• Took less than an hour to get my first build Including setting up PostgreSQL!

• Uses the local machine for builds
• Since moved to using DBoD and GitLab CI to build a container
• Setting up an extra worker was trivial

• Just need to be able to SSH to a machine with Nix
• Docker container on lblhcbpr3 with my build of Nix installed

• Support for slaves with different architectures or extra features (AVX?)

2https://nixos.org/hydra/

11

http://lhcb-hydra.cern.ch:3000/
https://nixos.org/hydra/

Hydra build “farm”

• Set up an instance of Hydra2 on openstack: http://lhcb-hydra.cern.ch:3000/
• Took less than an hour to get my first build Including setting up PostgreSQL!

• Uses the local machine for builds
• Since moved to using DBoD and GitLab CI to build a container
• Setting up an extra worker was trivial

• Just need to be able to SSH to a machine with Nix
• Docker container on lblhcbpr3 with my build of Nix installed

• Support for slaves with different architectures or extra features (AVX?)
2https://nixos.org/hydra/

11

http://lhcb-hydra.cern.ch:3000/
https://nixos.org/hydra/

nixpkgs overlays

• nixpkgs has a concept of overlays that are applied the main nixpkgs

• Can also override existing packages or package arguments

12

nixpkgs overlays

• nixpkgs has a concept of overlays that are applied the main nixpkgs

• Can also override existing packages or package arguments

12

LHCb version of nixpkgs

• Use first overlay to add packages that are unsuitable for upstream
• Second overlay is an argument to nixpkgs to set the environment

13

Creating environments

• nixpkgs can be used to create environments using buildEnv
• Symlinked to the store directory, similar to an LCG view

• To give a short but comprehensive example:

14

Creating environments

• You can then define multiple versions with different arguments
• I’ve created three as an example:

• Full example stored at: https://gitlab.cern.ch/lhcb-nix/lhcb-environments
• Built in the lhcb-environments project on hydra 15

The example environments

• As most of the work is done upstream adding packages is easy
• As these examples are designed to replace PATH entirely they contain:

• Shells: bash/zsh/tcsh/dash
• Standard utilities: coreutils/man/grep/tar/findutils/rsync/...
• Text editors: nano/vim/neovim/atom
• Version control: git/svn/hg

• Building: gcc/cmake/ninja/boost/libxml2/tbb/gperftools/...
• Debugging: gdb/lldb/valgrind
• TexLive 2017
• Python 2.7 with matplotlib/numpy/pandas/nose/jupyter/...
• Python 3.6 with matplotlib/numpy/pandas/snakemake/...
• XRootD with Python 2.7 and 3.6 bindings
• ROOT∗ with Python 2.7 and 3.6 bindings

16

The example environments

• As most of the work is done upstream adding packages is easy
• As these examples are designed to replace PATH entirely they contain:

• Shells: bash/zsh/tcsh/dash
• Standard utilities: coreutils/man/grep/tar/findutils/rsync/...
• Text editors: nano/vim/neovim/atom
• Version control: git/svn/hg
• Building: gcc/cmake/ninja/boost/libxml2/tbb/gperftools/...
• Debugging: gdb/lldb/valgrind
• TexLive 2017

• Python 2.7 with matplotlib/numpy/pandas/nose/jupyter/...
• Python 3.6 with matplotlib/numpy/pandas/snakemake/...
• XRootD with Python 2.7 and 3.6 bindings
• ROOT∗ with Python 2.7 and 3.6 bindings

16

The example environments

• As most of the work is done upstream adding packages is easy
• As these examples are designed to replace PATH entirely they contain:

• Shells: bash/zsh/tcsh/dash
• Standard utilities: coreutils/man/grep/tar/findutils/rsync/...
• Text editors: nano/vim/neovim/atom
• Version control: git/svn/hg
• Building: gcc/cmake/ninja/boost/libxml2/tbb/gperftools/...
• Debugging: gdb/lldb/valgrind
• TexLive 2017
• Python 2.7 with matplotlib/numpy/pandas/nose/jupyter/...
• Python 3.6 with matplotlib/numpy/pandas/snakemake/...

• XRootD with Python 2.7 and 3.6 bindings
• ROOT∗ with Python 2.7 and 3.6 bindings

16

The example environments

• As most of the work is done upstream adding packages is easy
• As these examples are designed to replace PATH entirely they contain:

• Shells: bash/zsh/tcsh/dash
• Standard utilities: coreutils/man/grep/tar/findutils/rsync/...
• Text editors: nano/vim/neovim/atom
• Version control: git/svn/hg
• Building: gcc/cmake/ninja/boost/libxml2/tbb/gperftools/...
• Debugging: gdb/lldb/valgrind
• TexLive 2017
• Python 2.7 with matplotlib/numpy/pandas/nose/jupyter/...
• Python 3.6 with matplotlib/numpy/pandas/snakemake/...
• XRootD with Python 2.7 and 3.6 bindings
• ROOT∗ with Python 2.7 and 3.6 bindings

16

Try it for yourself in docker!

Try it for yourself in docker! (CERN only due to firewall)

• Install Nix:
1 docker run --rm -it centos:7 bash
2 useradd test
3 yum install -y bzip2
4 mkdir -p -m 0755 /cvmfs/lhcbdev.cern.ch/nix
5 chown test /cvmfs/lhcbdev.cern.ch/nix
6 cd /home/test
7 su test bash -c "curl -LO https://chrisburr.me/lhcb-nix-2.0/nix-2.0-2018_03_20-x86_64-linux.tar.bz2"
8 su test bash -c "curl https://chrisburr.me/lhcb-nix-2.0/install | sh"

• Install one (or more) of the environments in any directory:
example_environment_gcc6/example_environment_gcc7/gaudi_environment_gcc7

1 su test
2 . /home/test/.nix-profile/etc/profile.d/nix.sh
3 export LC_ALL=en_US.utf-8
4 export LANG=en_US.utf-8
5
6 mkdir -p "/cvmfs/lhcbdev.cern.ch/nix/environments/"
7 export LHCB_NIX_ENV_DIR="/cvmfs/lhcbdev.cern.ch/nix/environments/analysis_environment_gcc7"
8 nix-env -ir analysis_environment_gcc7 --profile "${LHCB_NIX_ENV_DIR}" -Q -j8

• Set PATH and run!
1 su test
2 export LHCB_NIX_ENV_DIR="/cvmfs/lhcbdev.cern.ch/nix/environments/analysis_environment_gcc7"
3 export PATH="${LHCB_NIX_ENV_DIR}/bin"
4 export CMAKE_PREFIX_PATH="${LHCB_NIX_ENV_DIR}"
5 export NIX_SSL_CERT_FILE=/etc/ssl/certs/ca-bundle.crt
6 bash 18

A few limitations of this setup

• Downloads are slow:
• The binary cache is currently compressed on the fly by hydra
• There is a setting to copy them to a directory/AWS/..
• This can then be hosted on any web server
• Plus packages are then signed automatically

• Package signatures aren’t checked (see above)
• Some packages have issues being built inside docker containers

19

My thoughts...

Why use Nix?

• Software built should be able to run on “any” flavour of Linux

• Example works with CentOS 6, 7 and Ubuntu
• Darwin should be fairly easy to add
• Experimental support for AArch64

• Simpler environments
• Huge number of packages definitions already written ∼14,000
• Adding new package definitions is straight forward
• Active community, lots of very helpful experts on IRC

21

Why use Nix?

• Software built should be able to run on “any” flavour of Linux

• Simpler environments
• No more (ab)use of LD_LIBRARY_PATH or PYTHON_PATH
• Software with conflicting dependencies can be used at the same time

• Huge number of packages definitions already written ∼14,000
• Adding new package definitions is straight forward
• Active community, lots of very helpful experts on IRC

21

Why use Nix?

• Software built should be able to run on “any” flavour of Linux

• Simpler environments
• Huge number of packages definitions already written ∼14,000

• Adding new software to an environment is a one line change

• Adding new package definitions is straight forward
• Active community, lots of very helpful experts on IRC

21

Why use Nix?

• Software built should be able to run on “any” flavour of Linux

• Simpler environments
• Huge number of packages definitions already written ∼14,000
• Adding new package definitions is straight forward

• The standard builder already works with most build systems
• RUNPATH and other paths are set automagically
• Building Gaudi was trivial

(once I had written definitions for all of it’s HEP specific dependencies...)
(and fixed a bug? in the CMake config of the profiling module...)

• Active community, lots of very helpful experts on IRC

21

Why use Nix?

• Software built should be able to run on “any” flavour of Linux

• Simpler environments
• Huge number of packages definitions already written ∼14,000
• Adding new package definitions is straight forward
• Active community, lots of very helpful experts on IRC

21

What isn’t so good?

• Documentation is lacking some places

• But it’s rapidly improving
• Figuring things out from the source isn’t too difficult

• The Nix expression language has a steep learning curve
• Independence from the host system isn’t perfect
• Sometimes reproducible builds aren’t reproducible

22

What isn’t so good?

• Documentation is lacking some places

• The Nix expression language has a steep learning curve
• I had never used a functional language like Haskell
• Might have been easier if I had
• Doesn’t matter simple things like writing packages

• Independence from the host system isn’t perfect
• Sometimes reproducible builds aren’t reproducible

22

What isn’t so good?

• Documentation is lacking some places

• The Nix expression language has a steep learning curve
• Independence from the host system isn’t perfect

• I’ve read about issues with OpenGL/graphics drivers
• Kernel
• Can’t be worse than what already exists

• Sometimes reproducible builds aren’t reproducible

22

What isn’t so good?

• Documentation is lacking some places

• The Nix expression language has a steep learning curve
• Independence from the host system isn’t perfect
• Sometimes reproducible builds aren’t reproducible

• Only seen this happen due to remote files being removed/changed
• So long as the original nix store is kept there is always a copy

22

Conclusions

• Nix is awesome!
• I can see a lot of benefits and potential uses

• Could avoid issues with missing or conflicting dependencies
• Defining extra environments is easy (per analysis?/distributable?)
• Can update old environments where needed (XRootD?)

• Useful resources and some other details in backup

Any Questions?

23

Conclusions

• Nix is awesome!
• I can see a lot of benefits and potential uses

• Could avoid issues with missing or conflicting dependencies
• Defining extra environments is easy (per analysis?/distributable?)
• Can update old environments where needed (XRootD?)

• Useful resources and some other details in backup

Any Questions?

23

Useful resources

Documentation:

• Introduction to Nix: https://nixos.org/nixos/nix-pills/
• Nix manual: https://nixos.org/nix/manual/
• Nixpkgs manual: https://nixos.org/nixpkgs/manual/

24

https://nixos.org/nixos/nix-pills/
https://nixos.org/nix/manual/
https://nixos.org/nixpkgs/manual/

Python packages

• PYTHON_PATH isn’t ideal as it is used by all Python versions
• sitecustomize.py is aimed for this purpose

• Uses $LHCB_NIX_ENV_DIR/lib/pythonX.Y/site-packages/
• ROOT can’t be built with simultaneous Python 2 and 3 support

• Instead make the Python library a separate package
• Each is then loaded from lib/pythonX.Y/site-packages
• Using TPython from the root REPL uses Python 2

25

Debug symbols

• Stripped and deleted by default
• stdenv.mkDerivation has an option separateDebugInfo

• Makes a -debug package containing lib/debug/.build-id/XX/YYYY
• Can be loaded in GDB by modifying ∼/.gdbinit to contain:

• set debug-file-directory ENV_DIR/lib/debug
• There are probably other methods available

26

	What is Nix?
	What have I done?
	Try it for yourself in docker!
	My thoughts...

