technische universität dortmund

"Search for doubly charged Higgs bosons with the ATLAS detector"

Giulia Ucchielli on behalf of the ATLAS Collaboration

Charged 2018, Uppsala 27/09/2018

Outline:

- *why doubly charged Higgs bosons?*
- searches for doubly charged Higgs bosons in ATLAS @ 13 TeV

General Base Striplets (HTM) [2,3]

⊌ Higgs triplets (HTM) [<u>2</u>,<u>3</u>]

Zee-Babu models [4,5]

Left-Right symmetric models (LRSM) [1]

⊌ Higgs triplets (HTM) [<u>2,3</u>]

Zee-Babu models [4,5]

Georgi−Machacek [6]

Left-Right symmetric models (LRSM) [1]
Higgs triplets (HTM) [2,3]
Zee-Babu models [4,5]
Georgi–Machacek [6]

Why?

Restoring parity symmetry in weak interactions at higher energy (LRSM)
 Explain light neutrino masses through Type I/II See-Saw mechanism

 \hookrightarrow *Phenomenology: new particle* $H^{\pm\pm}$

left and right-handed in LRSM or letf-handed only in Higgs triplets

Left-Right symmetric models (LRSM) [1]
Higgs triplets (HTM) [2,3]
Zee-Babu models [4,5]
Georgi–Machacek [6]

Why?

Restoring parity symmetry in weak interactions at higher energy (LRSM)
 Explain light neutrino masses through Type I/II See-Saw mechanism

 \hookrightarrow Phenomenology: new particle $H^{\pm\pm}$

left and right-handed in LRSM or letf-handed only in Higgs triplets

♣ Both L and R triplets acquire a $v.e.v \neq 0$, constraint by precise measurements of W and Z boson masses:

$$\rho = \frac{M_{W_L}^2}{\cos^2 \theta_W M_Z^2} \sim \frac{1 + 2v_L^2/v^2}{1 + 4v_L^2/v^2} \quad \text{if } \varrho = 1.0004 \pm 0.003 \Rightarrow v_L < 1 \text{ GeV}$$

✤ In LRSM, three possible choices for *v.e.v*:

- $◆ v_L = v_R$ → unwanted because we need to break the symmetry ×
- **♦** $\mathbf{v}_{\mathbf{L}} \sim \mathbf{0}$ → wanted to preserve $\varrho = 1$: ✓
- $♦ v_R = 0$ → discarded because of the two above ×

$$v_L \propto \frac{v^2}{v_R}$$
 \rightarrow **v**_R ~ **TeV**

Production..

Main production at LHC

Production..

Production..

Production..

Main production at LHC

dominant in LRSM and HTM
 only production mode considered here and in ATLAS searches @ 7 TeV [Eur.Phys.J. C72 (2012) 2244] and
 @ 8 TeV [JHEP 03 (2015) 041]

Production..

Main production at LHC

..and decay

dominant in LRSM and HTM
 only production mode considered here and in ATLAS searches @ 7 TeV [Eur.Phys.J. C72 (2012) 2244] and
 @ 8 TeV [JHEP 03 (2015) 041]

To leptons:

$$\Gamma(H^{\pm\pm}
ightarrow \ell^{\pm}\ell'^{\pm}) = rac{(1+\delta_{
m OF})}{16\pi} h_{\ell\ell'}^2 m(H^{\pm\pm})$$

Coupling to leptons not determined by lepton mass
Lepton number violating decays are allowed.

To bosons:

$$\Gamma(H^{\pm\pm} \rightarrow W^{\pm}W^{\pm}) = \frac{g^4 v_t^2}{32\pi} \times f(m_{H^{\pm\pm}}, m_W)$$

Depends on *v.e.v* parameter
Dominant mode for *v.e.v* >0.1 MeV

Production..

Main production at LHC

dominant in LRSM and HTM only production mode considered here and in ATLAS searches @ 7 TeV [Eur.Phys.J. C72 (2012) 2244] and @ 8 TeV [JHEP 03 (2015) 041]

..and decay

To leptons:

$$(H^{\pm\pm}
ightarrow \ell^{\pm} \ell^{\prime\pm}) = rac{(1+\delta_{
m OF})}{16\pi} h_{\ell\ell^{\prime}}^2 m(H^{\pm\pm})$$

Coupling to leptons not determined by lepton mass
 Lepton number violating decays are allowed.
 Only light leptons (*e*, *µ*), either from H^{±±}

or from $W^{\pm}W^{\pm}$ decays, considered here

$\Gamma(H^{\pm\pm} \rightarrow W^{\pm}W^{\pm}) = \frac{g^4 v_t^2}{32\pi} \times f(m_{H^{\pm\pm}}, m_W)$

Depends on *v.e.v* parameter
Dominant mode for *v.e.v* >0.1 Me

Eur. Phys. J. C (2018) 78: 199

- *clean signature*: 2,3,4 light leptons
- ✤ masses 200-1300 GeV
- no explicit requirement on jet multiplicity

Signal region optimization based on signal topology:

- **♦** same-sign leptons with ΔR (< 3.5)
- *high transverse momentum of the same-sign pair (>100 GeV)*
- * mass equality in a pair ($\Delta M/M$)
- Major backgrounds:

electron charge misidentification, VV production, misreconstructed objects *faking* prompt leptons

- *clean signature*: 2,3,4 light leptons
- ✤ masses 200-1300 GeV
- no explicit requirement on jet multiplicity

Signal region optimization based on signal topology:

- * same-sign leptons with ΔR (< 3.5)
- *high transverse momentum of the same-sign pair (>100 GeV)*
- * mass equality in a pair ($\Delta M/M$)
- Major backgrounds:

electron charge misidentification, VV production, misreconstructed objects *faking* prompt leptons

Region Signal Regions 1P2L1P3L 2P4LChannel $e^{\pm}e^{\pm}$ $e^\pm e^\pm e^\mp$ Electron channel $e^{\pm}\mu^{\pm}\ell^{\mp}$ $\ell^{\pm}\ell^{\prime\mp}$ $\ell^\pm\ell^\pm$ $e^\pm \mu^\pm$ Mixed channel $\ell^{\mp}\ell^{\mp}$ $\mu^{\pm}\mu^{\pm}$ $\mu^{\pm}\mu^{\pm}\mu^{\mp}$ Muon channel $m(e^{\pm}e^{\pm})$ [GeV] $[200,\infty)$ $[200,\infty)$ $m(\ell^{\pm}\ell^{\pm})$ [GeV] $[200,\infty)$ $[200,\infty)$ $[200,\infty)$ $m(\mu^{\pm}\mu^{\pm})$ [GeV] $[200,\infty)$ $[200,\infty)$ *b*-jet veto 1 1 Z veto $\Delta R(\ell^{\pm}, \ell^{\pm}) < 3.5$ 1 $p_{\rm T}(\ell^{\pm}\ell^{\pm}) > 100 \,\,\mathrm{GeV}$ 1 $\sum |p_{\rm T}(\ell)| > 300 \, {\rm GeV}$ / $\Delta M/\bar{M}$ requirement Axε 9.1% 33.7%

- *clean signature*: 2,3,4 light leptons
- ✤ masses 200-1300 GeV
- no explicit requirement on jet multiplicity

Signal region optimization based on signal topology:

- **♦** same-sign leptons with ΔR (< 3.5)
- *high transverse momentum of the same-sign pair (>100 GeV)*
- * mass equality in a pair ($\Delta M/M$)
- Major backgrounds:

electron charge misidentification, VV production, misreconstructed objects *faking* prompt leptons

Region Signal Regions 1P2L1P3L 2P4LChannel $e^{\pm}e^{\pm}$ $e^\pm e^\pm e^\mp$ Electron channel $e^{\pm}\mu^{\pm}\ell^{\mp}$ $\ell^{\pm}\ell^{\prime\mp}$ $\ell^\pm\ell^\pm$ $e^{\pm}\mu^{\pm}$ Mixed channel $\ell^{\mp}\ell^{\mp}$ $\mu^{\pm}\mu^{\pm}\mu^{\mp}$ $\mu^{\pm}\mu^{\pm}$ Muon channel $m(e^{\pm}e^{\pm})$ [GeV] $[200,\infty)$ $[200,\infty)$ $[200,\infty)$ $m(\ell^{\pm}\ell^{\pm})$ [GeV] $[200,\infty)$ $[200,\infty)$ $m(\mu^{\pm}\mu^{\pm})$ [GeV] $[200,\infty)$ $[200,\infty)$ *b*-jet veto 1 1 Z veto $\Delta R(\ell^{\pm}, \ell^{\pm}) < 3.5$ 1 $p_{\rm T}(\ell^{\pm}\ell^{\pm}) > 100 \; {\rm GeV}$ 1 $\sum |p_{\rm T}(\ell)| > 300 {\rm GeV}$ / $\Delta M/\bar{M}$ requirement Axε 9.1% 33.7% 57.2%

$H^{\pm\pm} \rightarrow \ell^{\pm}\ell^{\pm}$ - electron charge misidentification:

Mainly due to:

bremsstrahlung: e[±] → e[±] γ → e[±] e[±]e[∓] : wrong calo-track matching *stiff tracks*: high-p_T electrons less bent by magnetic field
Muon charge mis-ID negligible (<1%) up to p_T~ 4 TeV

G.Ucchielli fo

Data-driven method in Z peak:

Select $Z \rightarrow ee$ events with:

 $\bullet \mid m_{OC(ee)} - m_Z \mid < 14 \text{ GeV}$

and two sideband regions:

♦ 14 GeV $< |m_{SC(ee)} - m_Z| < 18 \text{ GeV}$

$$\lambda = N^{ij}(P_i(1-P_j) + P_j(1-P_i))$$

$$f(N_{SS}^{ij};\lambda) = \frac{\lambda^{N_{SS}^{ij}e^{-\lambda}}}{N_{SS}^{ij}!}$$

$$-\log L(\boldsymbol{P}|N_{\text{SC}}, N) = \sum_{i,j} \log(N^{ij}(P_i(1-P_j)+P_j(1-P_i)))N_{\text{SC}}^{ij}$$
$$-N^{ij}(P_i(1-P_j)+P_j(1-P_i)) \longrightarrow \text{ extracted from the fit}$$

$H^{\pm\pm} \rightarrow \ell^{\pm}\ell^{\pm}$ - electron charge misidentification - II:

 $P(p_T, \eta) = \sigma(p_T) \times f(\eta)$

A bin-by-bin scale factor SF = P(CF;data)/P(CF;MC) and an anti-SF = [1-P(CF;data)]/[1-P(CF;MC)]are respectively applied to MC electrons with correct or incorrect charge. <u>Uncertainties:</u> statistics of the data/MC sample 10%-20% on rates across p_T, η bins.

$H^{\pm\pm} \rightarrow \ell^{\pm}\ell^{\pm}$ - fake lepton background:

Fake leptons

In-flight decays of mesons inside jets

- mis-identified jets
- initial/final state radiation conversions

F = -

tight

 $N^{\text{fake}} = \sum_{i=1}^{N_{\text{SB}}^{\text{mata}}} (-1)^{N_{L,i}+1} \prod_{l=1}^{N_{L,i}} F_l - \sum_{i=1}^{N_{\text{SB}}^{\text{MC}}} (-1)^{N_{L,i}+1} \prod_{l=1}^{N_{L,i}} F_l$

Design control regions enriched in fake leptons:

Selection for fake-enriched regions				
Muon channel	Electron channel			
Single-muon trigger	Single-electron trigger			
<i>b</i> -jet veto	<i>b</i> -jet veto			
One muon and one jet	One electron			
$p_{\rm T}({\rm jet}) > 35 { m ~GeV}$	Number of tight electrons < 2			
$\Delta \phi(\mu, \text{jet}) > 2.7$	<i>m</i> (<i>ee</i>) ∉ [71.2, 111.2] GeV			
$E_{\rm T}^{\rm miss}$ < 40 GeV	$E_{\rm T}^{\rm miss} < 25 { m ~GeV}$			

Eur. Phys. J. C (2018) 78: 199

Uncertainties:

• *fake composition*: varying nominal fake-enriched kinematic definition.

theory: residual component from prompt leptons subtracted to avoid double counting. change MC normalization up/down when subtracting from data.
 Uncertainty varies between 10%-20% depending on lepton p_{T.}

T∉I

|--|

Region	Control Regions			Validation Regions		
Channel	OCCR	DBCR	4LCR	SCVR	3LVR	4LVR
Electron channel	$e^{\pm}e^{\mp}$	$e^{\pm}e^{\pm}e^{\mp}$		$e^{\pm}e^{\pm}$	$e^{\pm}e^{\pm}e^{\mp}$	
Mixed channel	$\ell^{\pm} \ell^{\pm} \ell^{\pm}$		$\ell^{\pm}\ell^{\pm}$	$e^{\pm}\mu^{\pm}\ell^{\mp}$		$\ell^{\pm}\ell^{\pm}$
Mixed channel	-	$e^{-\mu^{-\ell}}$	$\ell^{\mp}\ell^{\mp}$	$e^{-\mu^{-}}$	$\ell^\pm\ell^\pm\ell'^\mp$	$\ell^{\mp}\ell^{\mp}$
Muon channel	-	$\mu^\pm \mu^\pm \mu^\mp$		$\mu^{\pm}\mu^{\pm}$	$\mu^\pm\mu^\pm\mu^\mp$	
$m(e^{\pm}e^{\pm})$ [GeV]	[130, 2000]	[90, 200)		[130, 200)	[90, 200)	
$m(\ell^{\pm}\ell^{\pm})$ [GeV]	-	[90, 200)	[60,150)	[130, 200)	[90, 200)	[150, 200)
$m(\mu^{\pm}\mu^{\pm})$ [GeV]	-	[60, 200)		[60, 200)	[60, 200)	
<i>b</i> -jet veto	1	1	✓	1	1	1
Z veto	-	inverted	-	-	1	-

used for Drell-Yan normalization

|--|

Region	Control Regions		Validation Regions			
Channel	OSCR .	DBCR	4LCR	SCVR	3LVR	4LVR
Electron channel	$e^{\pm}e^{\mp}$	$e^{\pm}e^{\pm}e^{\mp}$		$e^{\pm}e^{\pm}$	$e^{\pm}e^{\pm}e^{\mp}$	
Miyod shannol		s±u±ℓ∓	$\ell^{\pm}\ell^{\pm}$	~±±	$e^{\pm}\mu^{\pm}\ell^{\mp}$	$\ell^{\pm}\ell^{\pm}$
wixed channel	-	$e^{-\mu-\epsilon}$	$\ell^{\mp}\ell^{\mp}$	$e^{-\mu^{-}}$	$\ell^\pm\ell^\pm\ell'^\mp$	$\ell^{\mp}\ell^{\mp}$
Muon channel	-	$\mu^{\pm}\mu^{\pm}\mu^{\mp}$		$\mu^{\pm}\mu^{\pm}$	$\mu^\pm \mu^\pm \mu^\mp$	
$m(e^{\pm}e^{\pm})$ [GeV]	[130, 2000]	[90, 200)		[130, 200)	[90, 200)	
$m(\ell^{\pm}\ell^{\pm})$ [GeV]	-	[90, 200)	[60, 150)	[130, 200)	[90, 200)	[150, 200)
$m(\mu^{\pm}\mu^{\pm})$ [GeV]	-	[60, 200)		[60, 200)	[60, 200)	
<i>b</i> -jet veto	1	1	1	1	1	1
Z veto	-	inverted	-	-	1	-

used for diboson normalization

Region

Channel

Electron channel

Mixed channel

Muon channel

 $\overline{m(e^{\pm}e^{\pm})}$ [GeV]

 $m(\ell^{\pm}\ell^{\pm})$ [GeV]

 $m(\mu^{\pm}\mu^{\pm})$ [GeV]

250 ATLAS

Data

Diboson

b-jet veto

200

150

100

50

0

1.5

0.5⊾ 60

Data/SM

Z veto

Events

Eur. Phys. J. C (2018) 78: 199

200

Charged 2018, Uppsala, 27th September 2018

100

120

140

80

100

120

140

160

180

 $m(e^{\pm}\mu^{\pm})$ [GeV]

G.Ucchielli for

200

200

180

 $m(\mu^{\pm}\mu^{\pm})$ [GeV]

160

G.Ucchielli for

 \clubsuit $H^{\pm\pm}$ branching ratio not fixed across models

2 leptons signal region

No excess over Standard Model observed

 $H^{\pm\pm} \rightarrow \ell^{\pm}\ell^{\pm}$ - results:

Eur. Phys. J. C (2018) 78: 199

4 leptons signal region

Observed eeuu event compatible with ZZ production

Limits on mass and cross-section:

$$BR(e^{\pm}e^{\pm}) + BR(e^{\pm}\mu^{\pm}) + BR(\mu^{\pm}\mu^{\pm}) = 100\%, \ BR(X) = 0$$

sensitivity dominated by 4L signal region

 $BR(e^{\pm}e^{\pm}) + BR(e^{\pm}\mu^{\pm}) + BR(\mu^{\pm}\mu^{\pm}) \le 100\%, \ BR(X) \ne 0$

where *X* does not enter the signal regions, i.e. hadronic τ or *W* decays

✤ 2L/3L signal regions gain sensitivity

signal samples rescaled to reach the desired BR combination

26

Eur. Phys. J. C (2018) 78: 199

$BR(l^{\pm}l^{\pm}) + BR(X) = 100\%$

Dominating uncertainties: statistics, data-driven fakes and charge mis-identification

Charged 2018, Uppsala, 27th September 2018

 $H^{\pm\pm} \rightarrow \ell^{\pm}\ell^{\pm}$ - results:

G.Ucchielli for

$H^{\pm\pm} \rightarrow \mathcal{U}^{\pm}\mathcal{U}^{\pm}$ - analysis regions:

G.Ucchielli for

$H^{\pm\pm} \rightarrow \mathcal{U}^{\pm}\mathcal{U}^{\pm}$ - analysis regions:

signature: 2,3,4 light leptons + missing E_T
masses 200-700 GeV

Major backgrounds:
 WZ production, fakes

Preselection:

Selection criteria	$2\ell^{ss}$	3ℓ	4ℓ			
Trigger	At le	ast one lepton with $p_{\rm T}^{\ell} > 30$ Ge	eV			
	that fulfils t	he requirements of single-leptor	n triggers			
$N_{\ell}(L$ -type, $p_{\rm T} > 10$ GeV, $ \eta_{\ell} < 2.47)$	2	2 3				
$N_{\ell}(T$ -type, $p_{\rm T} > 10$ GeV, $ \eta_{\ell} < 2.47)$	2 $2(\ell_{1,2})$		_			
$ \Sigma Q_\ell $	2 1		0			
Lepton $p_{\rm T}$ threshold	$p_{\rm T}^{\ell_1,\ell_2} > 30,20 { m GeV}$ $p_{\rm T}^{\ell_0,\ell_1,\ell_2} > 10,20,20 { m GeV}$ $p_{\rm T}^{\ell_1,\ell_2,\ell_3}$		$p_{\rm T}^{\ell_1,\ell_2,\ell_3,\ell_4} > 10 {\rm GeV}$			
$E_{\mathrm{T}}^{\mathrm{miss}}$	> 70 GeV	> 30 GeV	> 30 GeV			
N _{jets}	≥ 3	≥ 2	_			
<i>b</i> -jet veto		$N_{b-\text{jet}} = 0$				
Low SFOS $m_{\ell\ell}$ veto	_	$m_{\ell^{\pm}\ell^{\mp}} > 15 \text{ GeV}$	$m_{\ell^{\pm}\ell^{\mp}} > 12 \text{ GeV}$			
Z boson decays veto	$ m_{e^{\pm}e^{\pm}} - m_Z > 10 \text{ GeV}$ $ m_{\ell^{\pm}\ell^{\mp}} - m_Z > 10 \text{ GeV}$					
			-			

$H^{\pm\pm} \rightarrow \mathcal{U}^{\pm}\mathcal{U}^{\pm}$ - analysis regions:

signature: 2,3,4 light leptons + missing E_T
masses 200-700 GeV

Major backgrounds:
 ZZ, ttV production

Preselection:

Selection criteria	$2\ell^{ss}$ 3ℓ		4 <i>ℓ</i>		
Trigger	At le	east one lepton with $p_{\rm T}^{\ell}$ > 30 Ge	×V		
	that fulfils t	he requirements of single-leptor	n triggers		
$N_{\ell}(L$ -type, $p_{\rm T} > 10$ GeV, $ \eta_{\ell} < 2.47)$	2	4			
$N_{\ell}(T$ -type, $p_{\rm T} > 10$ GeV, $ \eta_{\ell} < 2.47)$	2 2 ($\ell_{1,2}$)		-		
$ \Sigma Q_{\ell} $	2 1		0		
Lepton $p_{\rm T}$ threshold	$p_{\rm T}^{\ell_1,\ell_2} > 30,20 { m GeV}$ $p_{\rm T}^{\ell_0,\ell_1,\ell_2} > 10,20,20 { m GeV}$		$p_{\rm T}^{\ell_1,\ell_2,\ell_3,\ell_4} > 10 {\rm GeV}$		
$E_{\mathrm{T}}^{\mathrm{miss}}$	> 70 GeV > 30 GeV		> 30 GeV		
N _{jets}	≥ 3 ≥ 2		_		
<i>b</i> -jet veto	$N_{b-\text{jet}} = 0$				
Low SFOS $m_{\ell\ell}$ veto	$- \qquad \qquad m_{\ell^{\pm}\ell^{\mp}} > 15 \text{ GeV}$		$m_{\ell^{\pm}\ell^{\mp}} > 12 \text{ GeV}$		
Z boson decays veto	$ m_{e^{\pm}e^{\pm}} - m_Z > 10 \text{ GeV}$ $ m_{\ell^{\pm}\ell^{\mp}} - m_Z > 10 \text{ GeV}$				

arXiv:1808.01899v1

	using fa	ke-factor	using dat	a-driven SFs	
Sample	$2\ell^{ss}$	3ℓ	4 <i>ℓ</i> -Z	4 <i>ℓ</i> -T	
N_{ℓ} (type L)	2 🗸	• 3	3	• 3	
$ \Sigma Q_{\ell} $	2	1	1	1	
p_{T}^{ℓ}	> 30, 20 GeV	> 10, 20, 20 GeV	> 10, 10, 10 GeV	> 10, 10, 10 GeV	
Njets	≥ 3	1	1 or 2	1 or 2	
N_{b-jet}	0	_	_	—	
p_{T}^{jet}	> 25 GeV	> 25 GeV	> 25 GeV	> 30(25) GeV	
Z-window	$ m_{ee}^{\rm ss} - m_Z > 10 {\rm GeV}$	$ m_{\ell\ell}^{\rm os} - m_Z > 10 {\rm GeV}$	$ m_{\ell\ell}^{\rm os} - m_Z < 10 {\rm GeV}$	No same-flavour	
				opposite-sign lepton pair	
$m_{\ell\ell}^{\rm OS}$	—	> 15 GeV	_	_	
$E_{\rm T}^{\rm miss}$	< 70 GeV	-	< 50 GeV	_	
$m_{\rm T}$	—	_	< 50 GeV	_	

arXiv:1808.01899v1

Sample	$2\ell^{ss}$	3ℓ	4ℓ-Z	4 <i>ℓ</i> -T
N_{ℓ} (type L)	2	3	3	3
$ \Sigma Q_{\ell} $	2	1	1	1
p_{T}^{ℓ}	> 30, 20 GeV	> 10, 20, 20 GeV	> 10, 10, 10 GeV	> 10, 10, 10 GeV
Njets	≥ 3	1	1 or 2	1 or 2
N _{b-jet}	0	—	_	_
p _T ^{jet}	> 25 GeV	> 25 GeV	> 25 GeV	> 30(25) GeV
Z-window	$ m_{ee}^{\rm ss} - m_Z > 10 {\rm GeV}$	$ m_{\ell\ell}^{\rm os} - m_Z > 10 {\rm GeV}$	$ m_{\ell\ell}^{\rm os} - m_Z < 10 {\rm GeV}$	No same-flavour
				opposite-sign lepton pair
m_{PP}^{OS}	—	> 15 GeV	—	—
$E_{\rm T}^{\rm miss}$	< 70 GeV	—	< 50 GeV	—
$m_{\rm T}$	—	—	< 50 GeV	—

 $F = \frac{N_{TT}}{N_{TL}} \quad F_{\mu} = 0.14 \pm 0.03 \quad \Rightarrow \text{ systematic uncertainty of } 35\% \quad \text{from change} \\ F_{e} = 0.48 \pm 0.07 \quad \Rightarrow \text{ systematic uncertainty of } 56\% \quad \text{ selection} \end{cases}$

from changing the kinematic selection of the 2*l*^{ss} region

arXiv:1808.01899v1

Sample	$2\ell^{ss}$	3ℓ	4ℓ-Z	4 <i>ℓ</i> -T
N_{ℓ} (type L)	2	3	3	3
$ \Sigma Q_{\ell} $	2	1	1	1
p_{T}^{ℓ}	> 30, 20 GeV	> 10, 20, 20 GeV	> 10, 10, 10 GeV	> 10, 10, 10 GeV
Njets	≥ 3	1	1 or 2	1 or 2
N _{b-jet}	0	—	—	_
p_{T}^{jet}	> 25 GeV	> 25 GeV	> 25 GeV	> 30(25) GeV
Z-window	$ m_{ee}^{\rm ss} - m_Z > 10 {\rm GeV}$	$ m_{\ell\ell}^{\rm os} - m_Z > 10 {\rm GeV}$	$ m_{\ell\ell}^{\rm os} - m_Z < 10 {\rm GeV}$	No same-flavour
				opposite-sign lepton pair
$m_{\ell\ell}^{\rm OS}$	—	> 15 GeV	—	_
$E_{\mathrm{T}}^{\mathrm{miss}}$	< 70 GeV	—	< 50 GeV	_
m _T	—	—	< 50 GeV	_

 $F = \frac{N_{TT}}{N_{TL}} \quad F_{\mu} = 0.17 \pm 0.06 \quad \Rightarrow \text{ systematic uncertainty of 55\%} \quad \text{from chassical selection} \\ F_{e} = 0.39 \pm 0.07 \quad \Rightarrow \text{ systematic uncertainty of 81\%} \quad \text{selection} \\ F_{e} = 0.39 \pm 0.07 \quad \Rightarrow \text{ systematic uncertainty of 81\%} \quad \text{selection} \\ F_{e} = 0.39 \pm 0.07 \quad \Rightarrow \text{ systematic uncertainty of 81\%} \quad \text{selection} \\ F_{e} = 0.39 \pm 0.07 \quad \Rightarrow \text{ systematic uncertainty of 81\%} \quad \text{selection} \\ F_{e} = 0.39 \pm 0.07 \quad \Rightarrow \text{ systematic uncertainty of 81\%} \quad \text{selection} \\ F_{e} = 0.39 \pm 0.07 \quad \Rightarrow \text{ systematic uncertainty of 81\%} \quad \text{selection} \\ F_{e} = 0.39 \pm 0.07 \quad \Rightarrow \text{ systematic uncertainty of 81\%} \quad \text{selection} \\ F_{e} = 0.39 \pm 0.07 \quad \Rightarrow \text{ systematic uncertainty of 81\%} \quad \text{selection} \\ F_{e} = 0.39 \pm 0.07 \quad \Rightarrow \text{ systematic uncertainty of 81\%} \quad \text{selection} \\ F_{e} = 0.39 \pm 0.07 \quad \Rightarrow \text{ systematic uncertainty of 81\%} \quad \text{selection} \\ F_{e} = 0.39 \pm 0.07 \quad \Rightarrow \text{ systematic uncertainty of 81\%} \quad \text{selection} \\ F_{e} = 0.39 \pm 0.07 \quad \Rightarrow \text{ systematic uncertainty of 81\%} \quad \text{selection} \\ F_{e} = 0.39 \pm 0.07 \quad \Rightarrow \text{ systematic uncertainty of 81\%} \quad \text{selection} \\ F_{e} = 0.39 \pm 0.07 \quad \Rightarrow \text{ systematic uncertainty of 81\%} \quad \text{selection} \\ F_{e} = 0.39 \pm 0.07 \quad \Rightarrow \text{ systematic uncertainty of 81\%} \quad \text{selection} \\ F_{e} = 0.39 \pm 0.07 \quad \Rightarrow \text{ systematic uncertainty of 81\%} \quad \text{selection} \\ F_{e} = 0.39 \pm 0.07 \quad \Rightarrow \text{ systematic uncertainty of 81\%} \quad \text{selection} \\ F_{e} = 0.39 \pm 0.07 \quad \Rightarrow \text{ systematic uncertainty of 81\%} \quad \text{selection} \\ F_{e} = 0.39 \pm 0.07 \quad \Rightarrow \text{ systematic uncertainty of 81\%} \quad \text{selection} \\ F_{e} = 0.39 \pm 0.07 \quad \Rightarrow \text{ systematic uncertainty of 81\%} \quad \text{selection} \quad F_{e} = 0.39 \pm 0.07 \quad \Rightarrow \text{ systematic uncertainty of 81\%} \quad \text{selection} \quad F_{e} = 0.39 \pm 0.07 \quad \Rightarrow \text{ systematic uncertainty of 81\%} \quad F_{e} = 0.03 \quad F_{e} = 0.$

from changing the kinematic selection of the 3*l*^{ss} region

Here the opposite-charge lepton is always assumed to be prompt: the 3L formula reduces to the 2L case

arXiv:1808.01899v1

G.Ucchielli f

			Z+jets dominated	tt dominated
Sample	$2\ell^{ss}$	3ℓ	4ℓ-Z	4 <i>ℓ-</i> T
N_{ℓ} (type L)	2	3	3	3
$ \Sigma Q_{\ell} $	2	1	1	1
p_{T}^{ℓ}	> 30, 20 GeV	> 10, 20, 20 GeV	> 10, 10, 10 GeV	> 10, 10, 10 GeV
N _{jets}	≥ 3	1	1 or 2	1 or 2
N _{b-jet}	0	-	—	—
p _T ^{jet}	> 25 GeV	> 25 GeV	> 25 GeV	> 30(25) GeV
Z-window	$ m_{ee}^{\rm ss} - m_Z > 10 {\rm GeV}$	$ m_{\ell\ell}^{\rm os} - m_Z > 10 {\rm GeV}$	$ m_{\ell\ell}^{\rm os} - m_Z < 10 {\rm GeV}$	No same-flavour
				opposite-sign lepton pair
$m_{\ell\ell}^{\rm OS}$	—	> 15 GeV	—	—
$E_{\rm T}^{\rm miss}$	< 70 GeV	—	< 50 GeV	—
m _T	—	—	< 50 GeV	—

Solution mainly non-prompt from b-jets from ttV production, small component from light-quarks \swarrow heavy-flavour: the lower p_T lepton in the SS pair \bigstar light-flavour: the fake is assumed not to be from Z

$$N_{\text{Data}|X}^{\ell} - N_{\text{Prompt}|X}^{\ell} = \lambda_{\text{T}}^{\ell} N_{t\bar{t}|X}^{\ell} + \lambda_{Z}^{\ell} N_{Z+\text{jets}|X}^{\ell} \qquad X = Z, \mathsf{T}$$

 $\lambda_{\rm T}^e = 1.12 \pm 0.05, \, \lambda_{\rm Z}^e = 1.02 \pm 0.07, \, \lambda_{\rm T}^\mu = 1.11 \pm 0.05 \, \lambda_{\rm Z}^\mu = 0.94 \pm 0.07$

with a systematic uncertainty of 50%. Applied as "event weight" to simulation.

G.Ucchielli for

Mass-dependent and channel-dependent optimizations, exploiting:

 m_{Xl} of all leptons in the event;

 $\stackrel{\text{\tiny \ensuremath{\$}}}{=} \Delta R(l^{\pm}l^{\pm})$ and $\Delta R(l^{\pm}l^{\pm})^{max} / \Delta R(l^{\pm}l^{\pm})^{min}$ in the 4L channel

 m_{jets} only in the 2*L* channel

 p_T leading jet

 $= \Delta \Phi(l^{\pm}l^{\pm}, E_T^{miss})$ in the 2*L* channel

AR(l, jet) any lepton and its closest jet in the 3L channel

 $S = \frac{\mathcal{R}(\phi_{\ell_1}, \phi_{\ell_2}, \phi_{E_{\mathrm{T}}^{\mathrm{miss}}}) \cdot \mathcal{R}(\phi_{j1}, \phi_{j2}, \cdots)}{\mathcal{R}(\phi_{\ell_1}, \phi_{\ell_2}, \phi_{E_{\mathrm{T}}^{\mathrm{miss}}}, \phi_{j1}, \phi_{j2}, \cdots)} \text{ in the } 2L \text{ channel } \mathcal{R}(\phi_1, \cdots, \phi_n) = \sqrt{\frac{1}{n} \sum_{i=1}^n (\phi_i - \overline{\phi})^2}$

used in rectangular cut optimization

$H^{\pm\pm} \rightarrow \mathcal{U}^{\pm}\mathcal{U}^{\pm}$ - results:

likelihood function built using *six bin* counting experiment

arXiv:1808.01899v1

statistics, data-driven fakes and charge mis-identification

So evidence for doubly charged Higgs boson production

So evidence for doubly charged Higgs boson production...yet!

presented two complementary searches:

- $H^{\pm\pm} \rightarrow \ell^{\pm}\ell^{\pm}$ in LRSM:higher sensitivity, possible to reconstruct $H^{\pm\pm}$ mass (current best limit)
- $H^{\pm\pm} \rightarrow \mathcal{W}^{\pm}\mathcal{W}^{\pm}$ in HTM: lower sensitivity due to presence of E_T^{miss} , searched for the first time in ATLAS
- incoming LHC/ATLAS upgrades foreseen for Run 3 (300 fb⁻¹)/HL-LHC (3000 fb⁻¹): potential for HBSM discoveries!

- *more and more data* in Run2 to analyse!
- presented two complementary searches:
 - $H^{\pm\pm} \rightarrow \ell^{\pm}\ell^{\pm}$ in LRSM:higher sensitivity, possible to reconstruct $H^{\pm\pm}$ mass (current best limit)
 - $H^{\pm\pm} \rightarrow \mathcal{W}^{\pm}\mathcal{W}^{\pm}$ in HTM: lower sensitivity due to presence of E_T^{miss} , searched for the first time in ATLAS
- incoming LHC/ATLAS upgrades foreseen for Run 3 (300 fb⁻¹)/HL-LHC (3000 fb⁻¹): potential for HBSM discoveries!

Thank you for your attention!!

Additional Material

H^{±±} -Previous ATLAS searches:

Model: LRMS, pair production, BR(leptons)=100%

$H^{\pm\pm} \rightarrow \ell^{\pm}\ell^{\pm}$ - simulated samples:

Physics process	Event generator	ME PDF set	Cross-section normalisation	Parton shower	Parton shower tune
Signal					
$H^{\pm\pm}$	Рутніа 8.186 [34]	NNPDF2.3NLO [35]	NLO (see Table 2)	Рутнія 8.186	A14 [36]
Drell-Yan					
$Z/\gamma^* ightarrow ee/ au au$	Powheg-Box v2 [37-39]	CT10 [40]	NNLO [41]	Рутнія 8.186	AZNLO [42]
Тор					
tī	Powheg-Box v2	NNPDF3.0NLO [43]	NNLO [44]	Рутнія 8.186	A14
Single top	Powheg-Box v2	CT10	NLO [45]	Рутніа 6.428 [<mark>46</mark>]	Perugia 2012 [47]
$t\bar{t}W, t\bar{t}Z/\gamma^*$	MG5_AMC@NLO 2.2.2 [48]	NNPDF2.3NLO	NLO [49]	Рутнія 8.186	A14
tīH	MG5_AMC@NLO 2.3.2	NNPDF2.3NLO	NLO [49]	Рутнія 8.186	A14
Diboson					
ZZ, WZ	Sherpa 2.2.1 [50]	NNPDF3.0NLO	NLO	SHERPA	Sherpa default
Other (inc. $W^{\pm}W^{\pm}$)	Sherpa 2.1.1	CT10	NLO	Sherpa	SHERPA default
Diboson Sys.					
ZZ, WZ	Powheg-Box v2	CT10NLO	NLO	Рутнія 8.186	AZNLO

$m(H^{\pm\pm})$ [GeV]	$\sigma(H_L^{\pm\pm})$ [fb]	K-factor $(H_L^{\pm\pm})$	$\sigma(H_R^{\pm\pm})$ [fb]	<i>K</i> -factor $(H_R^{\pm\pm})$
300	13	1.25	5.6	1.25
350	7.0	1.25	3.0	1.25
400	3.9	1.24	1.7	1.24
450	2.3	1.24	0.99	1.24
500	1.4	1.24	0.61	1.24
600	0.58	1.23	0.25	1.24
700	0.26	1.23	0.11	1.23
800	0.12	1.22	0.054	1.23
900	0.062	1.22	0.027	1.23
1000	0.032	1.22	0.014	1.24
1100	0.017	1.23	0.0076	1.24
1200	0.0094	1.23	0.0042	1.25
1300	0.0052	1.24	0.0023	1.26

$H^{\pm\pm} \rightarrow \ell^{\pm}\ell^{\pm}$ - systematic uncertainties:

Figure 6: Relative uncertainties in the total background yield estimation after the fit. 'Stat. Unc.' corresponds to reducible and irreducible background statistical uncertainties. 'Yield fit' corresponds to the uncertainty arising from fitting the yield of diboson and Drell–Yan backgrounds. 'Lumi' corresponds to the uncertainty in the luminosity. 'Theory' indicates the theoretical uncertainty in the physics model used for simulation (e.g. cross-sections). 'Exp.' indicates the uncertainty in the simulation of electron and muon efficiencies (e.g. trigger, identification). 'Fakes' is the uncertainty associated with the model of the fake background. Individual uncertainties can be correlated, and do not necessarily add in quadrature to the total background uncertainty, which is indicated by 'Total Unc.'.

	$\begin{array}{c} \text{OCCR} \\ e^{\pm}e^{\mp} \end{array}$	I e	DBCR ${}^{\pm}e^{\pm}e^{\mp}$	$\mathrm{DB}\ e^{\pm}\mu$	BCR ı±ℓ [∓]	$\begin{array}{c} \text{DBCR} \\ \mu^{\pm}\mu^{\pm}\mu^{\mp} \end{array}$	$\begin{array}{c} 4LCR\\ \ell^{\pm}\ell^{\pm}\ell^{\mp}\ell^{\mp}\end{array}$
Observed events	184 569		576	10)25	797	140
Total background	184570 ± 430	574	±24	1025	±32	797 ± 28	140 ± 12
Drell–Yan	169 980 ± 990		_	-	_	_	_
Diboson	5060 ± 900	449	± 28	909	±35	775 ± 29	138 ± 12
Fakes	2340 ± 300	123	±15	113	±14	19.9 ± 6.5	5 1.31 ± 0.16
Тор	7200 ± 250	1.5	58 ± 0.06	2.90	$) \pm 0.11$	2.04 ± 0.0	0.37 ± 0.01
	SCV	'R	SC	CVR	:	SCVR	4LVR
	$e^{\pm}e$	±	e^{\pm}	${}^{\pm}\mu^{\pm}$		$\mu^{\pm}\mu^{\pm}$	$\ell^{\pm}\ell^{\pm}\ell^{\mp}\ell^{\mp}$
Observed ever	nts 323	7	11	162		1006	3
Total backgrou	und 3330 ±	210	1119	±51	975	±50	4.62 ± 0.40
Drell–Yan	2300 ±	: 190		_		_	_
Diboson	319 ±	25	547	±23	719	± 30	4.59 ± 0.4
Fakes	640 ±	65	502	±54	249	±47	_
Тор	71.5 ±	6.8	70.5	± 2.6	6.	93 ± 0.27	0.033 ± 0.001

	$3LVR \\ e^{\pm}e^{\pm}e^{\mp}$	$\begin{array}{c} 3LVR\\ e^{\pm}\mu^{\pm}\ell^{\mp} \end{array}$	$\begin{array}{c} 3LVR\\ \mu^{\pm}\mu^{\pm}\mu^{\mp} \end{array}$	3LVR $\mu^{\pm}\mu^{\pm}e^{\mp}, e^{\pm}e^{\pm}\mu^{\mp}$
Observed events	108	180	126	16
Total background	88.1 ± 5.8	192.9 ± 9.9	107.0 ± 5.1	27.0 ± 3.9
Diboson Fakes Top	$\begin{array}{rr} 64.4 & \pm 5.8 \\ 23.3 & \pm 3.0 \\ 0.50 \pm 0.03 \end{array}$	$\begin{array}{rrr} 147.3 & \pm 9.0 \\ 43.9 & \pm 4.9 \\ 1.73 \pm 0.09 \end{array}$	$\begin{array}{rrr} 100.9 & \pm 5.0 \\ 5.3 & \pm 1.2 \\ 0.82 \pm 0.05 \end{array}$	4.72 ± 0.79 21.3 ± 3.4 1.01 ± 0.15
	$\frac{\text{SR1P2L}}{e^{\pm}e^{\pm}}$	$\frac{\text{SR1P2L}}{e^{\pm}\mu^{\pm}}$	$\frac{\text{SR1P2L}}{\mu^{\pm}\mu^{\pm}}$	$\frac{\text{SR2P4L}}{\ell^{\pm}\ell^{\pm}\ell^{\mp}\ell^{\mp}}$
Observed events	132	106	26	1
Total background	160 ± 14	97.1 ± 7.7	22.6 ± 2.0	0.33 ± 0.23
Drell–Yan	70 ± 10	_	_	_
Diboson	30.5 ± 3.0	40.4 ± 4.5	20.3 ± 1.8	0.11 ± 0.06
Fakes	52.2 ± 5.0	53.1 ± 5.8	1.94 ± 0.47	0.22 ± 0.19
Тор	7.20 ± 0.97	3.62 ± 0.53	0.42 ± 0.03	0.007 ± 0.002

	$\frac{\text{SR1P3L}}{e^{\pm}e^{\pm}e^{\mp}}$	$\frac{\text{SR1P3L}}{e^{\pm}\mu^{\pm}\ell^{\mp}}$	$\frac{\text{SR1P3L}}{\mu^{\pm}\mu^{\pm}\mu^{\mp}}$	SR1P3L $\mu^{\pm}\mu^{\pm}e^{\mp}, e^{\pm}e^{\pm}\mu^{\mp}$
Observed events	11	23	13	2
Total background	13.0 ± 1.6	34.2 ± 3.6	13.2 ± 1.3	3.1 ± 1.4
Diboson Fakes Top	9.5 ± 1.3 3.3 ± 0.67 0.14 ± 0.02	$\begin{array}{rrr} 23.1 & \pm 2.9 \\ 10.7 & \pm 1.7 \\ 0.45 \pm 0.04 \end{array}$	13.1 ± 1.3 - 0.12 ± 0.01	0.27 ± 0.14 2.6 ± 1.2 0.19 ± 0.08

Charged 2018, Uppsala, 27th September 2018

Charged 2018, Uppsala, 27th September 2018

Charged 2018, Uppsala, 27th September 2018

Process	Event Generator	ME order	Parton Shower	PDF	Tune
VV, qqVV, VVV	Sherpa 2.1.1 [31]	MEPS NLO	Sherpa 2.1.1	CT10 [32]	SHERPA 2.1.1 default
tīH	MG5_AMC [33]	NLO	Рутніа 8 [22]	NNPDF 3.0 NLO [34]	A14 [28]
VH	Pythia 8	LO	Pythia 8	NNPDF 2.3 LO	A14
tHqb	MG5_AMC	LO	Рутніа 8	CT10	A14
tHW	MG5_AMC	NLO	Herwig++ [35]	CT10	UE-EE-5 [36]
$t\bar{t}W, t\bar{t}(Z/\gamma^*)$	MG5_AMC	NLO	Рутніа 8	NNPDF 3.0 NLO	A14
$t(Z/\gamma^*)$	MG5_AMC	LO	Рутніа 6 [<mark>21</mark>]	CTEQ6L1 [26, 27]	Perugia2012 [37]
$tW(Z/\gamma^*)$	MG5_AMC	NLO	Рутніа 8	NNPDF 2.3 LO	A14
tīt, tītī	MG5_AMC	LO	Рутніа 8	NNPDF 2.3 LO	A14
$t\bar{t}W^+W^-$	MG5_AMC	LO	Pythia 8	NNPDF 2.3 LO	A14
$V\gamma$	Sherpa 2.2	MEPS NLO	Sherpa 2.2	NNPDF 3.0 NLO	SHERPA 2.2 default
<i>s</i> -, <i>t</i> -channel, <i>Wt</i> single top	Powheg-Box v 2 [38, 39]	NLO	Рутніа б	CT10/CTEQ6L1	Perugia2012

2L

3L

Charged 2018, Uppsala, 27th September 2018

4L

 $H^{\pm\pm} \rightarrow \mathcal{U}^{\pm}\mathcal{U}^{\pm}$ - signal region optimization:

		$2\ell^{ss}$			3ℓ				
Selection criteria	$e^{\pm}e^{\pm}$	$e^{\pm}\mu^{\pm}$	$\mu^{\pm}\mu^{\pm}$	SFOS 0	SFOS 1,2				
	$m_{H^{\pm\pm}} = 200 \text{ GeV}$								
$E_{\rm T}^{\rm miss}$ [GeV]	> 100	> 100	> 100	> 45	> 45	> 60			
$m_{x\ell}$ [GeV]	[25, 130]	[15, 150]	[35, 150]	> 160	> 170	> 230			
$\Delta R_{\ell^{\pm}\ell^{\pm}}$ [rad.]	< 0.8	< 1.8	< 0.9	[0.15, 1.57]	[0.00, 1.52]				
$\Delta \phi(\ell \ell, E_{\rm T}^{\rm miss})$ [rad.]	< 1.1	< 1.3	< 1.3						
S[rad.]	< 0.3	< 0.3	< 0.2						
m _{jets} [GeV]	[140, 770]	[95, 330]	[95, 640]						
$\Delta R_{\ell-\text{jet}}$ [rad.]				[0.08, 1.88]	[0.07, 1.31]				
$p_{\rm T}^{\rm leading jet}$ [GeV]				> 80	> 55				
$p_{\mathrm{T}}^{\ell_1}$ [GeV]						> 65			
$\Delta R_{\ell^{\pm}\ell^{\pm}}^{\min}$ [rad.]						[0.16, 1.21]			
$\Delta R_{\ell^{\pm}\ell^{\pm}}^{\max}$ [rad.]						[0.27, 2.03]			
			$m_{H^{\pm\pm}} =$	300 GeV					
$E_{\rm T}^{\rm miss}$ [GeV]	> 200	> 200	> 200	> 65	> 55	> 60			
$m_{x\ell}$ [GeV]	[105, 340]	[80, 320]	[80, 320]	> 170	> 210	> 270			
$\Delta R_{\ell^{\pm}\ell^{\pm}}$ [rad.]	< 1.4	< 1.8	< 1.8	[0.18, 2.23]	[0.08, 2.23]				
$\Delta \phi(\ell \ell, E_{\rm T}^{\rm miss})$ [rad.]	< 2.1	< 2.4	< 2.4						
S[rad.]	< 0.4	< 0.4	< 0.4						
m _{jets} [GeV]	[180, 770]	[130, 640]	[130, 640]						
$\Delta R_{\ell j}$ [rad.]				[0.27, 2.37]	[0.21, 2.08]				
$p_{\mathrm{T}}^{\mathrm{leading jet}}$ [GeV]				> 95	> 80				
$p_{\mathrm{T}}^{\ell_1}$ [GeV]						> 45			
$\Delta R_{\ell^{\pm}\ell^{\pm}}^{\min}$ [rad.]						[0.09, 1.97]			
$\Delta R_{\ell^{\pm}\ell^{\pm}}^{\max}$ [rad.]						[0.44, 2.68]			

Charged 2018, Uppsala, 27th September 2018

hà

			$m_{H^{\pm\pm}} =$	400 GeV		
$E_{\rm T}^{\rm miss}$ [GeV]	> 200	> 200	> 200	> 65	> 85	> 60
$m_{x\ell}$ [GeV]	[105, 340]	[80, 350]	[80, 350]	> 230	> 250	> 270
$\Delta R_{\ell^{\pm}\ell^{\pm}}$ [rad.]	< 2.2	< 1.8	< 1.8	[0.22, 2.39]	[0.29, 2.69]	
$\Delta \phi(\ell \ell, E_{\rm T}^{\rm miss})$ [rad.]	< 2.4	< 2.4	< 2.4			
S[rad.]	< 0.6	< 0.6	< 0.5			
m _{jets} [GeV]	[280, 1200]	[220, 1200]	[220, 1200]			
$\Delta R_{\ell j}$ [rad.]				[0.30, 2.59]	[0.31, 2.30]	
$p_{\rm T}^{\rm leading jet}$ [GeV]				> 120	> 100	
$p_{\mathrm{T}}^{\ell_1}$ [GeV]						> 110
$\Delta R_{\ell \pm \ell \pm}^{\min}$ [rad.]						[0.39, 2.22]
$\Delta R_{\ell^{\pm}\ell^{\pm}}^{\max}$ [rad.]						[0.55, 2.90]
			$m_{H^{\pm\pm}}=50$	00–700 GeV		
$E_{\rm T}^{\rm miss}$ [GeV]	> 250	> 250	> 250	> 120	> 100	> 60
$m_{x\ell}$ [GeV]	[105, 730]	[110, 440]	[110, 440]	> 230	> 300	> 370
$\Delta R_{\ell^{\pm}\ell^{\pm}}$ [rad.]	< 2.6	< 2.2	< 2.2	[0.39, 3.11]	[0.29, 2.85]	
$\Delta \phi(\ell \ell, E_{\rm T}^{\rm miss})$ [rad.]	< 2.6	< 2.4	< 2.4			
S[rad.]	< 1.1	< 1.1	< 1.1			
m _{jets} [GeV]	> 440	> 470	> 470			
$\Delta R_{\ell j}$ [rad.]				[0.60, 2.68]	[0.31, 2.53]	
$p_{\rm T}^{\rm leading jet}$ [GeV]				> 130	> 130	
$p_{\mathrm{T}}^{\ell_1}[\mathrm{GeV}]$						> 160
$\Delta R_{\ell^{\pm}\ell^{\pm}}^{\min}$ [rad.]						[0.53, 3.24]
$\Delta R_{\ell^{\pm}\ell^{\pm}}^{\max}$ [rad.]						[0.59, 2.94]

hà

		$2\ell^{ss}$		3	4 <i>l</i>	
Subchannel	$e^{\pm}e^{\pm}$	$e^{\pm}\mu^{\pm}$	$\mu^{\pm}\mu^{\pm}$	SFOS 0	SFOS 1,2	
		$m_{H^{\pm\pm}} =$	= 200 GeV			
Prompt lepton	0.5 ± 0.2	0.3 ± 0.2	1.3 ± 0.6	0.3 ± 0.1	1.4 ± 0.5	0.07 ± 0.03
QMisID	0.6 ± 0.2	0.4 ± 0.1	_	_	_	_
Fake lepton	1 ± 1	< 0.4	0.4 ± 0.3	0.2 ± 0.1	0.2 ± 0.1	0.03 ± 0.02
Total background	2 ± 1	0.6 ± 0.3	1.7 ± 0.7	0.5 ± 0.1	1.7 ± 0.6	0.11 ± 0.05
Signal	1.1 ± 0.2	2.3 ± 0.4	2.4 ± 0.4	1.8 ± 0.3	5.0 ± 0.9	1.1 ± 0.2
A [%]	0.037	0.080	0.082	0.061	0.17	0.038
n ₉₅	12.3	7.1	7.5	4.1	7.7	3.8
Data	3	2	2	1	2	0
		$m_{H^{\pm\pm}} =$	= 300 GeV			
Prompt lepton	0.1 ± 0.1	0.9 ± 0.4	0.02 ± 0.02	0.4 ± 0.1	4 ± 1	0.3 ± 0.1
QMisID	0.1 ± 0.1	0.07 ± 0.04	_	_	_	_
Fake lepton	0.4 ± 0.5	< 0.2	< 0.4	0.3 ± 0.2	0.8 ± 0.4	0.2 ± 0.2
Total background	0.7 ± 0.5	1.0 ± 0.5	0.02 ± 0.02	0.8 ± 0.2	5 ± 2	0.5 ± 0.2
Signal	0.16 ± 0.03	0.6 ± 0.1	0.29 ± 0.05	0.6 ± 0.1	1.8 ± 0.3	0.43 ± 0.08
A [%]	0.027	0.10	0.049	0.11	0.30	0.071
n ₉₅	4.0	9.6	3.0	3.1	22.7	3.8
Data	0	3	0	0	11	0

		$2\ell^{\rm ss}$		3	4ℓ	
Subchannel	$e^{\pm}e^{\pm}$	$e^{\pm}\mu^{\pm}$	$\mu^{\pm}\mu^{\pm}$	SFOS 0	SFOS 1,2	
		$m_{H^{\pm\pm}} =$	= 400 GeV			
Prompt lepton	0.7 ± 0.3	1.0 ± 0.4	0.2 ± 0.1	0.3 ± 0.1	4 ± 1	0.3 ± 0.1
QMisID	0.3 ± 0.1	0.2 ± 0.1	_	_	_	_
Fake lepton	0.4 ± 0.5	< 0.3	< 0.4	0.3 ± 0.2	0.2 ± 0.1	0.05 ± 0.04
Total background	1.4 ± 0.6	1.2 ± 0.5	0.3 ± 0.1	0.6 ± 0.2	4 ± 1	0.4 ± 0.1
Signal	0.20 ± 0.04	0.38 ± 0.07	0.19 ± 0.03	0.23 ± 0.04	0.6 ± 0.1	0.17 ± 0.03
A [%]	0.11	0.21	0.11	0.13	0.36	0.092
n ₉₅	10.4	18.3	6.4	3.1	10.4	4.3
Data	2	6	1	0	4	1
		$m_{H^{\pm\pm}} =$	= 500 GeV			
Prompt lepton	1.0 ± 0.4	0.7 ± 0.3	0.3 ± 0.2	0.4 ± 0.1	3 ± 1	0.2 ± 0.1
QMisID	0.3 ± 0.1	0.2 ± 0.1	_	_	_	_
Fake lepton	0.2 ± 0.5	0.3 ± 0.5	< 0.4	0.11 ± 0.06	0.10 ± 0.05	0.2 ± 0.2
Total background	1.6 ± 0.6	1.2 ± 0.6	0.3 ± 0.2	0.5 ± 0.1	3.0 ± 0.8	0.4 ± 0.2
Signal	0.10 ± 0.02	0.16 ± 0.03	0.07 ± 0.01	0.09 ± 0.02	0.24 ± 0.04	0.06 ± 0.01
A [%]	0.16	0.25	0.11	0.14	0.37	0.098
$A [\%] m_{H^{\pm\pm}} = 600 \text{GeV}$	0.22	0.36	0.16	0.17	0.44	0.11
$A [\%] m_{H^{\pm\pm}} = 700 \text{GeV}$	0.26	0.38	0.17	0.19	0.48	0.12
<i>n</i> ₉₅	8.6	12.7	3.8	3.0	7.9	4.9
Data	4	3	0	0	2	3

