### Status of the intermediate-mass region: First steps into *terra incognita*

Marco Zaro cHarged 2018









 In the 2HDM, the dominant production channel depends on the Charged Higgs mass



H± mostly produced in tt events. The full  $pp \rightarrow H^{\pm}W^{\mp}b\overline{b}$ H± mostly produced in<br/>association with a top quark<br/>simulated.





 In the 2HDM, the dominant production channel depends on the Charged Higgs mass







 In the 2HDM, the dominant production channel depends on the Charged Higgs mass



#### Can take the $\Gamma_t \rightarrow 0$ limit





 In the 2HDM, the dominant production channel depends on the Charged Higgs mass

Light Higgs Heavy Higgs

Top cross-section at NNLO QCD: Czakon et al, arXiv:1303.6254, arXiv:1511.00549, ...

EW corrections to top cross-section: Beenakker et al., Nu.Ph.B.411(1994), Hollik et al., arXiv: 0708.1697, ...

NNLO QCD corrections to Γ(t→W+b): Czarnecki et al, hep-ph/9806244, …

NLO (SUSY-)QCD corrections to Γ(t→H+b): Reid et al, Z.Phys.C (1990), Li et al, Phys.Rev.D (1990), Czarnecki et al., Phys.Rev.D (1993), ..., Heynemeyer et al., hep-ph/9812320 NLO (SUSY-)QCD corrections: Zhu, hep-ph/ 0112109, Plehn, hep-ph/0206121, Berger et al, hepph/0312286 (5FS); Dittmaier et al, arXiv:0906.2648 (4FS); Flechl et al, arXiv:1409.5615 (Santander-Martched) EW corrections: Beccaria et al, arXiv:0908.1332

(5FS); Nhung et al, arXiv:1210.4087 (4FS) Threshold resummation: Kidonakis, arXiv:1005.4451 (5FS)

Fully differential NLO+PS: Weydert et al, arXiv: 0912.3430, Klasen et al, arXiv:1203.1341 (5FS); Degrande et al, arXiv:1507.02549 (4FS)

#### Can take the $\Gamma_t \rightarrow 0$ limit Both cases are known at or beyond NLO QCD





- LHC experiments tend to exclude a light charged Higgs
- For a heavy charged Higgs, only very large values of  $\tan\beta$  are excluded
- Missing mass window due to nonexistence of predictions for the intermediate range beyond LO



#### CMS, PAS HIG-14-020



4





# Why to care about the intermediate-mass region?

- Because it is there
- SUSY models where the 125 GeV Higgs is the heavy H boson can have the charged Higgs in the intermediate-mass region Bechtle, Haber, Heinemeier, Stal, Stefaniak, Weiglein, Zeune, arXiv:1608.00638
- In some of these models the light Higgs can act as a mediator to DM Profumo, Stefaniak, arXiv:1608.06945



Marco Zaro, 27-09-2018





#### Getting ready to sail



### NWO Getting accurate predictions for the intermediate-mass region

Degrande, Frederix, Hirschi, Ubiali, Wiesemann, MZ, arXiv: 1607.05291

- The full process  $pp \rightarrow H^{\pm}W^{\mp}b\overline{b}$  has to be simulated, consistently including the top quark width.  $\Gamma_t = \Gamma_t(m_{H^{\pm}}, \tan\beta)$
- Diagrams with 0, 1 and 2 resonant tops contribute to the total cross-section, as well as diagrams with neutral Higgs bosons



- Cross-section for  $m_{H\pm} > m_t (m_{H\pm} < m_t)$  will get the dominant contribution from single- (double)-resonant diagrams
- LO total cross section has large (30-50%) theoretical errors. For accurate predictions one needs to compute NLO corrections





### Effect of neutral Higgs bosons



- Diagrams with neutral Higgs bosons introduce additional dependence on the h/H/A masses and on the neutral Higgs mixing  $\alpha$ .
- Assuming *h* to be the SM Higgs ( $m_h$ =125 GeV and  $\cos(\beta \alpha) \approx 0$ ), for non-resonant configurations  $(m_{h/H/A} < m_W + m_{H\pm})$  the contribution to the total cross section is small ( $\leq 7\%$ )
- In practice, these diagrams will be neglected
- Cross section will just depend on  $m_{H\pm}$  and  $\tan\beta$  (same as the heavy/light case)







#### Calculation setup

- Computation carried out with MADGRAPH5\_AMC@NLO, improved with resonance-aware FKS subtraction Frederix et al. arXiv: 1603:01178
- Focus on type-II 2HDM (extension to MSSM and other 2HDMs will be discussed)
- Use massive bottom quarks (4FS). Use PDF4LHC\_nlo\_nf4 PDFs
- Complex top-mass (and Yukawa) scheme to include the top width in a gaugeinvariant way.  $\Gamma_t$  computed at NLO for every  $(m_{H\pm}, \tan\beta)$  point
- Use a fixed central scale,  $\mu_{R/F}$ =125 GeV
  - Matches scales used in the light- and heavy-Higgs regions
  - Scale uncertainties obtained by varying independently up/down of a factor 2
- Use the  $\overline{MS}$  scheme for  $y_b$  renormalisation (introduces extra  $\mu_R$  dependence)
- Scan 145 GeV <  $m_{H\pm}$  < 200 GeV
- Three values of  $\tan\beta$  will be considered  $(\tan\beta = 1, 8, 30)$
- Other input parameters follow the recommendation of the LHC HXSWG







































# Extension to other values of $tan\beta$ or different 2HDMs

- The charged Higgs cross section receives contributions proportional to  $y_b^2$  (~tan $\beta^2$ ),  $y_t^2$ (~1/tan $\beta^2$ ) and  $y_b y_t$  (constant).
- МАDGRAPH5\_AMC@NLO has been extended in order to return the three individual contributions
- The cross section at any value of  $\tan\beta$  can be computed as  $\sigma(\tan\beta') = \left[ \left( \frac{\tan\beta'}{\tan\beta} \right)^2 \sigma_{y_b^2}(\tan\beta) + \sigma_{y_by_t}(\tan\beta) + \left( \frac{\tan\beta}{\tan\beta'} \right)^2 \sigma_{y_t^2}(\tan\beta) \right] \times \left( \frac{\Gamma_t(\tan\beta)}{\Gamma_t(\tan\beta')} \right)^2$
- Cross-checked by recomputing our results at  $\tan\beta=1$  and  $\tan\beta=30$ , starting from  $\tan\beta=8$ . Agreement below 1% was found
- Can be extended to obtain the charged Higgs cross section in other 2HDM scenarios (e.g. type 1 or MSSM with  $\Delta_b$  corrections)

$$\sigma^{t-I}(\tan\beta') = \frac{\sigma^{t-I}(\tan\beta = 1)}{(\tan\beta')^2} \times \left(\frac{\Gamma_t(\tan\beta)}{\Gamma_t(\tan\beta')}\right)^2$$

 (m<sub>H±</sub>, tanβ) grids for type-I and II 2HDM available at https://twiki.cern.ch/twiki/bin/view/LHCPhysics/LHCHXSWGMSSMCharged

Marco Zaro, 27-09-2018

#### 2. SUSY QCD NLO corrections

- The leading SUSY QCD corrections can be added as usual for the heavy H+ case
  - $\Delta b$  corrections
  - Same simple arithmetic trick to fold them in without knowledge of the three individual terms [from the <u>LHC H XS WG twiki</u>]
    - Find the delta\_b value corresponding to tb
    - Calculate tbeff = tb/sqrt {1 + delta\_b}
    - Using the cross sections without SUSY-QCD NLO corrections, get the cross section which corresponds to tbeff (!)
    - Multiply the result from the previous bullet with 1/(1 + delta\_b) => this is your cross section
- Note that for tan  $\beta < 10$ , non-factorizable corrections can become significant O(10%)

Martin Flechl, cHarged 2016



### Recommendations for signal simulation

https://cp3.irmp.ucl.ac.be/projects/madgraph/wiki/chargedHiggs

- Since a fully-differential NLO computation does not exist, current recommendations for signal simulation rely on LO events, normalised to NLO cross section
- This makes it possible also to add contributions with the extra scalars (h/H/A), which can be evaluated at LO
- More refined approaches can also be performed (reweight jet multiplicity, ...)
- Questions for our experimental colleagues:
  - Is this enough?
  - What is on your wish-list?
  - Any other obstacle that us (theorists) should help removing?





#### First steps in a new land

- Very recently, ATLAS published updated searches for  $H^{\pm} \rightarrow \tau \nu$ including the intermediate-mass range (arXiv:1807.07915, see Blake Oliver Burghgrave's talk this morning)
- Charged Higgses below 160 GeV are excluded for all  $tan\beta$







#### First steps in a new land

• CMS has followed yesterday!

(CMS-PAS-HIG-18-014, see Alexandros Attikis and Jan Eyserman's talks this morning)

• All  $tan\beta$  values excluded up to 150 GeV







### Conclusions & Outlook

- The discovery of a charged Higgs boson will be a clear sign of BSM physics
- NLO predictions for the charged Higgs cross-section have been made available for  $m_{H\pm} \sim m_t$ , making accurate predictions available in all the mass range
- The full pp→H<sup>±</sup>W<sup>∓</sup>bb process interpolates well between the lowand high-mass region
- NLO K-factor is 1.5-1.6, with little  $m_{H\pm}$ , tan $\beta$  dependence and scale uncertainties reduced to 10-20%
- Full tanβ scan (for type-II and type-I 2HDM) available on https://twiki.cern.ch/twiki/bin/view/LHCPhysics/LHCHXSWGMSSMCharged
- First analyses in the intermediate-mass region published by ATLAS and CMS, with 36 fb<sup>-1</sup>. Masses up 160 GeV / 150 GeV excluded in the hMSSM /MSSM m<sub>H</sub><sup>mod+</sup>