

Measurement of the properties of the SM-like Higgs boson in ATLAS and CMS

CHARGED 2018

Zirui Wang (Shanghai Jiao Tong Univ./Univ. of Michigan)

On behalf of the ATLAS and CMS Collaborations

25 Sep. 2018, Uppsala, Sweden

The Higgs boson in the SM

- Following the Higgs Boson with mass ~ 125 GeV discovered in 2012, more data have allowed for its properties to measured.
 - The Higgs Boson couplings to other particles are set by their masses, which determine all SM-like Higgs Boson production and decay modes including the Higgs self-coupling.

XS in pb	13 TeV	8 TeV	σ13/σ8
ggF	48.52	21.39	2.3
VBF	3.78	1.60	2.4
WH	1.37	0.70	2.0
ZH	0.88	0.42	2.1
bbH	0.49	0.20	2.4
ttH	0.51	0.13	3.8
tH	0.09	0.02	3.9

 There is an increase in production cross sections from increased center-of-mass energy

SM Higgs Decay BR

- $H \rightarrow ZZ^* \rightarrow 4I$ (I=e, μ) and $H \rightarrow \gamma\gamma$: low BR but clean signature. The excellent mass resolution is crucial for the Higgs boson mass measurement.
- $H \rightarrow WW^*$: high BR but low mass resolution.
- $H \rightarrow bb$ and $H \rightarrow \tau\tau$: high BR, low S/B and low mass resolution at LHC.

Outline

- LHC Run-1 Legacy
- Property measurement results:
 - Mass and width
 - Differential cross sections
 - Production, decay and coupling
 - Di-Higgs production and Higgs self-coupling
- Summary

Caveat: To fits the time allocated, only a selective set of results will be shown.

LHC Run 1 Legacy

- Gluon fusion and Vector boson fusion production modes are observed in Run-1.
- $H \rightarrow ZZ^*, H \rightarrow \gamma\gamma, H \rightarrow WW$ and $H \rightarrow \tau\tau$ decay modes are **observed** in Run-1.
- Higgs boson couplings measured with ~10% 30% precision.
- The 95% CL upper limit for **BR(BSM)** is **0.34**.

LHC Run 1 Legacy

Phys. Rev. Lett. 114, 191803

- The Run-1 Higgs boson mass is measured from a combination of the four results in the H→ZZ*→4I (I=e,μ) and H→γγ channels for ATLAS and CMS.
- ~ 0.2% precision reached by Run-1 Higgs boson mass measurement.
- As for spin/parity, both CMS and ATLAS results show SM (J^p = 0⁺) is highly favored against pure alternative. (Exclude tested hypotheses with CL > 99.9%)
- Studies of width, differential distributions didn't show deviation with SM prediction.

LHC Run-2 13 TeV:

Mass and Width of Higgs Boson

- Mass measurement is performed based on $H \rightarrow ZZ^* \rightarrow 4I(I=e,\mu)$ and $H \rightarrow \gamma\gamma$ analysis channels.
- To achieve the optimal calibration of photon/lepton, detailed performance studies have been performed.

Mass Measurement

Measured m_H :

- ATLAS+CMS Run 1 combined: $125.09 \pm 0.24 \text{ GeV}$
- ATLAS Run 2 combined: $124.86 \pm 0.27 \ GeV$
- ATLAS Run 1+2 combined: $124.97 \pm 0.24 \ GeV = 124.97 \pm 0.19(\text{stat}) \pm 0.13(\text{syst}) \ GeV$
- CMS Run 2 $H \rightarrow ZZ^* \rightarrow 4l$: 125.26 \pm 0.21 GeV = 125.26 \pm 0.20(stat) \pm 0.08(syst)*GeV*

Width Measurement

- It is difficult to directly measure Higgs boson width (~4 MeV predicted by SM).
- The best direct limit is $\Gamma_H < 1.10 \text{ GeV} @ 95\% \text{ CL}$ from CMS $H \rightarrow ZZ^* \rightarrow 4I$
- Indirect limit can be set from measuring the on- and off-shell signal strength in high-mass tails:

$$\sigma_{\rm off-shell} \propto \kappa_{g,\rm off-shell}^2 \cdot \kappa_{Z,\rm off-shell}^2$$
$$\sigma_{\rm on-shell} \propto \frac{\kappa_{g,\rm on-shell}^2 \cdot \kappa_{Z,\rm on-shell}^2}{\Gamma_H / \Gamma_H^{SM}}$$

$$u_{\text{off-shell}} = \frac{\sigma_{\text{off-shell}}}{\sigma_{\text{off-shell}},\text{SM}} < 3.8 @ 95\% \text{ CL}$$

- ATLAS Run-1 result: Γ_{H} <22.7 MeV @ 95% CL (33.0 MeV exp.)
- The latest ATLAS Run-2 combining $H(*) \rightarrow ZZ(*) \rightarrow 4I$ and $H^* \rightarrow ZZ \rightarrow 2I2v$: $\Gamma_H < 14.4 \text{ MeV} @ 95\% \text{ CL} (15.2 \text{ MeV exp.})$

Differential cross sections measurement

Differential cross sections

- Differential cross sections measurement probe the kinematic properties of the Higgs boson, which is sensitive to new physics.
- Minimal model dependence. Measurements are corrected for detector effects. Results are reported at the particle level.

• 79.8/fb $H \rightarrow \gamma \gamma$ and $H \rightarrow ZZ^* \rightarrow 4I$ result from ATLAS. 35.9/fb $H \rightarrow \gamma \gamma$, $H \rightarrow ZZ^*$ and $H \rightarrow bb$ from CMS.

Differential Cross sections

- Various differential measurements probed.
- Unprecedented precision reached.
- In general, results are all **compatible with SM prediction**.

Higgs coupling: production and decay modes

$H \rightarrow \gamma \gamma$ and $H \rightarrow ZZ^* \rightarrow 4I$

- Clean signature and excellent invariant mass resolution.
- Disentangle different production modes of the signal.
- Analysis measures production rates and properties by splitting dataset into independent "categories" enhanced in a target production mode.

 $H \rightarrow \gamma \gamma, \ \mu = 1.06^{+0.14}_{-0.12} (80/\text{fb})$ 1.06^{+0.08}_{-0.08} (stat.)^{+0.08}_{-0.07} (exp.)^{+0.07}_{-0.06} (th.)

 $H \rightarrow ZZ * \rightarrow 4l, \ \mu = 1.19^{+0.16}_{-0.15}(80/\text{fb})$ 1.19^{+0.12}_{-0.12}(stat.)^{+0.06}_{-0.06}(exp.)^{+0.08}_{-0.07}(th.)

 $H \rightarrow \gamma \gamma, \mu = 1.18^{+0.17}_{-0.14}(36/\text{fb})$ 1.18^{+0.12}_{-0.11}(stat.)^{+0.09}_{-0.07}(exp.)^{+0.07}_{-0.06}(th.)

 $H \rightarrow ZZ \ast \rightarrow 4l, \mu = 1.05^{+0.19}_{-0.17} (36/\text{fb})$ 1.05^{+0.15}_{-0.14} (stat.)^{+0.11}_{-0.09} (syst.)

H→bb

- $H \rightarrow bb$ takes the largest BR~58% \rightarrow drives total width, constrains BSM BR allowed.
- In the most sensitive VH, H→bb analysis, both ATLAS and CMS have 3 channels (0-, 1-, 2 charged leptons from the vector boson)
- Using MVA to increase S/B in the signal region. Control regions to validate background and derive the normalizations. **Shapes from MC**.
- Analyses are now dominated by systematic uncertainties → Adding new data is not enough.

H→bb

- Run-1 VH(bb) ATLAS+CMS combined significance 2.6σ(3.7σ exp.)
- Run-2 36/fb evidence of VH(bb): 3.5σ(3.0σ exp.) from ATLAS and 3.3σ(2.8σ exp.) from CMS.

ATLAS:

- VH(bb) Run 1+2 combined significance 4.9σ(5.1σ exp.)
- *H(bb)* Run 1+2 combined significance 5.4σ(5.5σ exp.)

- VH(bb) Run 1+2 combined significance 4.9σ(4.8σ exp.)
- *H(bb)* Run 1+2 combined significance 5.5σ(5.6σ exp.)

 $H \rightarrow bb$ measurements assume SM production cross sections.

- VH takes ~ 3% of the total Higgs boson production on LHC.
- Only targets leptonic decay mode for bb channel. ZZ and yy also have regions for hadronic categories.

VH production mode observed after VH combination!

- ATLAS combine Run-2 analyses in bb, γγ and 4l final states.
- Results assume SM Higgs boson branching fractions.
- Observation of VH production at 5.3σ (4.8σ exp.)
- Dominant contribution is from bb channel: 4.9σ.
- 1.1σ and 1.9σ contribution from 4l and γγ channel, respectively.

H→WW*

 ATLAS and CMS use various categories targeted for ggH/VBF production. CMS also uses 3I+4I events targeting VH

 $H \rightarrow WW, \ \mu_{ggF} = 1.21^{+0.22}_{-0.21} \ 6.3\sigma(5.2\sigma \text{ exp.})$ $1.21^{+0.10}_{-0.10}(\text{stat.})^{+0.15}_{-0.15}(\text{exp.})^{+0.13}_{-0.12}(\text{th.})$ $H \rightarrow WW, \ \mu_{VBF} = 0.62^{+0.37}_{-0.36} \ 1.9\sigma(2.7\sigma \text{ exp.})$ $0.62^{+0.30}_{-0.28}(\text{stat.})^{+0.16}_{-0.16}(\text{exp.})^{+0.13}_{-0.13}(\text{th.})$

 $H \rightarrow WW, \mu = 1.28^{+0.18}_{-0.17} \ 9.1\sigma(7.1\sigma \text{ exp.})$ $1.28^{+0.10}_{-0.10}(\text{stat.})^{+0.11}_{-0.11}(\text{exp.})^{+0.10}_{-0.07}(\text{th.})$

$H \rightarrow \tau \tau$

- ATLAS and CMS developed 3 channels targeting all possible di-tau decay modes.
- Both τ leptonic and hadronic decay modes considered.
- Both experiments observe $H \rightarrow \tau \tau$ with > 5 σ .

ATLAS:

Run-2 4.4 σ (4.1 σ exp.) Run 1+2 6.4 σ (5.4 σ exp.) Obs. - bkg

H___77

Bkg. unc.

m_{rr} (GeV)

250

m_{tt} (GeV)

300

CMS:

Run-2 4.9 σ (4.7 σ exp.) Run 1+2 5.9σ(5.9σ exp.)

$H \rightarrow \mu \mu$

- Probe 2nd generation fermions coupling. Clean experimental signature with very small BR. Large Drell-Yan background.
- Events categorized by dimuon pT, and BDT that enhances VBF contribution.
- Fitting strategy: extract a signal peak from a continuum falling background, which is similar to the $H \rightarrow \gamma \gamma$ analysis.

ttH production mode

Decay mode	Branching fraction [%]
$H \rightarrow bb$	58.1 ± 1.0
$H \rightarrow WW$	21.5 ± 0.5
H ightarrow gg	8.18 ± 0.59
$H \to \tau \tau$	6.26 ± 0.15
$H \to cc$	2.88 ± 0.14
$H \rightarrow ZZ$	2.64 ± 0.06
$H ightarrow \gamma \gamma$	0.227 ± 0.007
$H ightarrow Z \gamma$	0.154 ± 0.011
$H ightarrow \mu \mu$	0.021 ± 0.001

- The coupling strength through a Yukawa coupling is proportional to the mass of the fermion → Largest coupling to top quark
- Deviation of couplings → sensitive to new physics
- Run-1 ATLAS+CMS combined ttH significance 4.4σ(2.0σ exp.)
- Multiple decay channels are combined in order to reach observation.

ttH production mode

13 TeV ttH results of different decay channels:

Phys. Lett. B 784(2018) 173

ttH, *H*→γγ ATLAS 4.1σ (3.7σ exp., 79.8 /fb) CMS 1.4σ (1.5σ exp., 35.9/fb)

Phys. Rev. D 97, 072003 (2018)

ttH, ML(H→ττ, H→WW*, 36/fb) ATLAS 4.1σ (2.8σ exp.) CMS 3.2σ (2.8σ exp.)

ttH *, H→bb* **(36/fb)** ATLAS 1.4σ (1.6σ exp.) CMS 1.6σ (2.2σ exp.)

ttH production mode observed after ttH combination!

Phys. Lett. B 784 (2018) 173

ATLAS

Run-2 5.8σ (4.9σ exp.) Run-1+2 6.3σ (5.1σ exp.)

Phys. Rev. Lett. 120, 231801 (2018)

CMS Run-2 4.5σ Run-1+2 5.2σ (4.2σ exp.)

Higgs coupling: Combine all Higgs boson measurements

- Combination inputs: CMS has additional ggF $H \rightarrow bb$, VH $H \rightarrow WW$, and $H \rightarrow inv$. channels. ATLAS with $H \rightarrow ZZ$, $H \rightarrow \gamma\gamma$ and $H \rightarrow \mu\mu$ updated to 80/fb.
- More channels will be covered in the following combination analysis.

- ATLAS: $\mu = 1.13^{+0.09}_{-0.08} = 1.13^{+0.05}_{-0.05}$ (stat.) $^{+0.05}_{-0.05}$ (exp.) $^{+0.05}_{-0.04}$ (sig. th.) $^{+0.03}_{-0.03}$ (bkg. th.)
- CMS: $\mu = 1.17^{+0.10}_{-0.10} = 1.17^{+0.06}_{-0.06} (\text{stat.})^{+0.06}_{-0.05} (\text{sig. th.})^{+0.06}_{-0.05} (\text{other sys.})$
- The overall production rate of the Higgs boson was measured to be in agreement with Standard Model predictions, with an uncertainty of 8%-10%
- All major production modes have been observed!

- Couplings are in an excellent

 agreement with the Standard Model
 prediction over a range covering 3
 orders of magnitude in mass, from the
 top quark to the much lighter muons.
- The precision is better than Run1 ATLAS+CMS combination.

Simplified Template Cross Sections

STXS can make Higgs measurements less model dependent than measurements during Run 1

- STXS (Simplified Template Cross Sections) splits Higgs productions into exclusive kinematic regions (Described in <u>YR4</u> (Section III.2).
- Instead of performing differential measurement in clean channels only, intend for combination of all decay channels.
- Minimize the dependence on theoretical uncertainties.

Simplified template cross sections

- ATLAS performed a combination of STXS with a fine granularity measurements for the 36.1/fb *H→yy and H→4I* channel.
- ggH measurements are in good agreement with the SM.
- Best precisions of ~20% reached

- CMS combined all major decay modes: H→γγ, H→ZZ, H→bb, H→WW, H→ττ for STXS.
- Good agreement with SM. Best precisions of <20% reached

Di-Higgs Production and Higgs self-coupling

Di-Higgs Production

j. Qian's Higgs Hunting talk

At $\sqrt{s} = 13$ TeV for $m_H = 125$ GeV $\sigma_{gg \to HH}^{SM} = 33.53$ fb $\left[1.0^{+4.3\%}_{-6.0\%} (\text{scale}) \pm 2.3\% (\alpha_s) \pm 2.1\% (\text{PDF}) \pm 5\% (\text{Th.}) \right]$ Compared with

$$\sigma_{gg \to H}^{SM} = 48.52 \text{ pb} \left[1.0^{+7.4}_{-7.9} (\text{scale}) \right]^{+7.1}_{-6.0} (\text{PDF} + \alpha_s)$$

- ~ 1: 1500 difference → Need to compromise with signal yields (BR) and S/B to select analysis channels
- Higgs self-coupling can be probed by *HH* production at the LHC ($\lambda = \frac{m_H^2}{2\nu^2} \approx 0.13$ in SM)

Di-Higgs Production

- Limit from ATLAS HH combination: μ<6.7 (10.4 exp.)
- Limit from CMS HH combination: μ<22 (13 exp.)
- Limit of Higgs self-coupling SF $\kappa_{\lambda} = \frac{\lambda_{H}}{\lambda_{H,SM}}$ @95% CL
 - ATLAS: $-5.0 < \kappa_{\lambda} < 12.1 \ (-5.8 < \kappa_{\lambda} < 12.0 \ \text{,exp.})$
 - CMS: $-11.8 < \kappa_{\lambda} < 18.8 (-7.1 < \kappa_{\lambda} < 13.6$, exp.)
- Both CMS and ATLAS results reaches ~x10 SM expected production.
- The next step is to reach SM sensitivity in HL-LHC term!

- A lot of impressive Higgs results come from LHC Run 1+2
 - All major production modes have been observed.
 - Higgs coupling to 3rd generation fermions are confirmed.
 - The mass, width and couplings measurements reach unprecedented precision.
 - Di-Higgs production reaches ~x10 SM expected production.
- No obvious deviation from SM captured so far.
- Waiting for the full Run-2 dataset and the HL-LHC to reach a higher sensitivity to the potential new physics!

Thanks

Backup

Large Hadron Collider at CERN

Detector performance

Electron reconstruction efficiencies in $Z \rightarrow ee$ events as a function of transverse energy ET, integrated over the full pseudorapidity range.

Tag-and-probe efficiency for muon reconstruction and identification in 2015 data (circles), simulation (squares), and the ratio (bottom inset) for loose muons with pT>20 GeV. The statistical uncertainties are smaller than the symbols used to display the measurements.

tH production mode

- tH production cross section is small, but sensitive to the relative sign between κ_t and κ_V .
- If $\kappa_t / \kappa_V < 0$, tH cross section will be larger than ttH.
- tH production mode can **directly constrain** the sign preference of κ_t/κ_V .

- Results from CMS Run-2 36/fb combination of tH ML, tH, $H \rightarrow bb$ and ttH, $H \rightarrow \gamma\gamma$
- With the assumption that $\kappa_V = 1$, the negative sign of κ_t / κ_V is excluded at 1.5 σ level.

VH production mode

- Introduce one scale factor κ per SM particle with observable "Higgs coupling" at the LHC: κW, κZ, κt, κb, κτ, κμ, κγ, κg, κH
- Use best available SM calculation for cross sections and BR, to look for deviations from the SM.

• Can handle other production and decay vertices in a similar way (much simpler in most cases)

- from Generic kappa model:
 - 95% CL upper limit for B_{BSM} from ATLAS: 0.26
 - 95% CL upper limit for B_{inv} from CMS: 0.22
- Ratio coupling model will reduce the model assumptions and test the possible new physics contributions.
- Results are in agreement with SM.

 θ_2

 θ_1

Spin and parity

- Test various alternative spin-parity options against the SM hypothesis $J^p = 0^+$ using angular and kinematic distributions in Higgs decays.
 - $H \rightarrow \gamma \gamma$ (sensitivity to 2⁺, excludes spin 1).
 - $H \rightarrow ZZ^* \rightarrow 4I$ (sensitivity to all spin/parity).
 - $H \rightarrow WW^* \rightarrow IvIv$ (sensitivity to spin 1 and 2).
- Both CMS and ATLAS results show SM is highly favored against pure alternative. (Exclude tested hypotheses with CL > 99.9%)

Significance obs. (exp.)	ATLAS+CMS Run-1	ATLAS(36.1 – 79.8 /fb)
VBF	5.4(4.6)	6.5(5.3)
VH	3.5(4.2)	5.3(4.8)
ttH	4.4(2.0)	5.8(5.3)

• Run 2 $H \rightarrow \gamma \gamma$ mass resolution: 1.4-2.1 GeV • Run 2 $H \rightarrow ZZ^* \rightarrow 4I$ mass resolution: 1.6-2.4 GeV